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1. INTRODUCTION 

      Academic achievement is a crucial outcome metric in educational systems, and identifying 
its determinants is essential in constructing coherent, research-driven educational policies. 
Student performance is affected by individual abilities, school-level characteristics, family 
history, household setting, and behavioral indications such as absenteeism (Rakesh et al., 2025). 
Comprehending these related variables is essential for advancing equity and enhancing 
educational results across diverse populations. Global assessment programs like the Programme 
for International Student Assessment (PISA) provide vast cross-national data sets, offering a 
chance to enhance our comprehension of how sociocultural, economic, and contextual factors 
effect learning results(PISA 2022 Database | OECD, n.d.). These data sets facilitate 
comparative analysis and policy development by correlating student performance with 
underlying factors such as socioeconomic position, familial support, and access to educational 
resources.  

      Many studies indicate that socioeconomic status (SES) and the home environment are 
among the most significant determinants of academic achievement(Chmielewski, 2019; 
Guevara-Reyes et al., 2025; Jin, 2023; Liu et al., 2024; Sirin, 2005). Students from higher 
socioeconomic backgrounds typically possess advantages derived from elevated parental 
education levels, professional occupational status, and enhanced access to material and cultural 
capital, all of which collectively foster greater cognitive development and sustained academic 
engagement(Chmielewski, 2019; Jin, 2023). In contrast, students from disadvantaged 
socioeconomic circumstances sometimes face educational disadvantages due to constrained 
learning opportunities, diminished parental participation, and limited access to technology and 
cultural resources(Davis-Kean, 2005; Jerrim & Macmillan, 2015). 

      Moreover, student behavioral factors, particularly absenteeism, are established predictors 
of lower academic achievement, diminished motivation, and reduced social engagement. 
Chronic absenteeism is consistently associated with lower academic performance, reduced 
motivation, and weaker social integration within school settings(Gottfried, 2014; Kearney, 
2008). The consequences of absenteeism are significantly intensified by familial and home 
circumstances, as students from lower socioeconomic backgrounds encounter supplementary 
obstacles to consistent attendance including insufficient transportation, minimal parental 
oversight, or conflicting household responsibilities that further aggravate educational 
disparities(Klein et al., 2020; Sosu et al., 2021). 

      In recent years, the application of machine learning (ML) methods in educational research 
has expanded, providing powerful tools to analyze complex and nonlinear relationships among 
multiple variables. Unlike traditional statistical techniques such as regression analysis, ML 
models can flexibly capture multidimensional patterns within large-scale datasets(Chen & 
Ding, 2023). Recent research has showed that classification and ensemble-based algorithms can 
effectively predict academic achievement and reveal the relative relevance of contributing 
factors, resulting in more precise and evidence-based policy making(Guevara-Reyes et al., 
2025). Despite all of these developments, existing ML literature is limited by the absence of 
nationally representative datasets and the insufficient incorporation of comprehensive family, 
household, and behavioral factors. 
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       The aim of this study is to employ machine learning techniques on the Türkiye subsample 
of PISA 2022 to investigate how familial background, household context, digital access 
indicator and absenteeism influence mathematics achievement. Specifically, first students were 
categorized into high- and low-achievement groups, and multiple classifiers including Random 
Forest, ExtraTrees and Gradient boosting were trained and optimized through hyperparameter 
tuning to assess predictive performance and the relative importance of the features. The results 
contribute to the growing body of evidence on how socioeconomic status, home environment, 
absenteeism and digital access indicators shape learning outcomes among Turkish students, 
underscoring the potential of ML methodologies as powerful tools for generating policy-
relevant insights in educational research. 

2. METHODOLOGY 
 

2.1 Data Set and Preprocessing 

      The dataset used in this research is from the Türkiye subsample of PISA 2022, which is 
administered by the Organisation for Economic Cooperation and Development (OECD). PISA 
assesses 15-year-old students' knowledge and skills in mathematics, reading, and science from 
participating nations. Turkey samples of PISA data set comprises cognitive performance scores, 
detailed background questionnaires, and contextual factors that represent pupils' socioeconomic 
position, home resources, digital access, and school-related behaviors. The analysis focused on 
students who completed the mathematics assessment and provided valid responses to the 
selected socioeconomic, household, and behavioral indicators. As illustrated in Table 1, the 
dependent variable was mathematics performance (PV1MATH). To facilitate binary 
classification, students were categorized into high- and low-achievement groups using the 
median mathematics score of the training set as the threshold, thereby avoiding data leakage. 
Independent variables were organized into three conceptual domains. The first domain included 
family and home indicators reflecting students’ socioeconomic and cultural backgrounds.  
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This domain included the Economic, Social, and Cultural Status (ESCS) index, which 
summarizes parental education, occupation, and household possessions as a composite measure 

VARIABLE OECD Description 

PV1MATH First plausible value for mathematics proficiency; OECD-generated estimate of 
student math ability. 

ESCS Economic, Social and Cultural Status Index derived from parental education 
(HISCED), parental occupation (HISEI), and home possessions (HOMEPOS); 
standardized across OECD. 

HISCED Highest parental education level according to ISCED 2011 (0–8). Codes 9/10 
represent missing values. 

PAREDINT Parental involvement index based on student-reported parental engagement in 
learning and school activities. 

HISEI Highest parental occupational status measured using the ISEI scale (16–90). 
Negative values indicate invalid or missing data. 

WORKHOME Indicates whether the student has a quiet place to study at home. Negative responses 
represent invalid values. 

HOMEPOS Home Possessions Index reflecting cultural and educational resources available at 
home (books, internet, study desk, etc.). 

ICTHOME Availability of ICT devices at home (e.g., laptop, desktop computer, tablet); 
measures household digital resources. 

ICTAVHOM Student-reported accessibility of ICT tools at home; indicates whether digital 
resources are usable. 

ICTQUAL ICT Quality Index measuring student perceptions of device performance and 
internet quality. Values ≤ −6 represent OECD-coded missing data. 

ST062Q01TA Frequency of arriving late to school in the past two weeks. 

ST062Q02TA Frequency of skipping a full school day in the past two weeks. 

ST062Q03TA Frequency of skipping classes (partial absenteeism) in the past two weeks. 

ST004D01T Gender (1 = Male, 2 = Female). Converted to binary in analysis    

 (Male = 0, Female = 1). 

Table 1:  OECD Definitions of Variables Included in the Analysis 
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of socioeconomic advantage. Parental education levels were represented by HISCED (highest 
parental education in ISCED levels) and PAREDINT (average parental education level), while 
parental occupational status (HISEI) captured the highest International Socio-Economic Index 
of Occupational Status within the family. Indicators of home-learning resources included 
WORKHOME (availability of a quiet study space), HOMEPOS (overall household educational 
resources and possessions), and Information and Communication Technology (ICT) related 
items such as ICTHOME (ICT resources available at home), ICTAVHOM (average ICT 
availability) and ICTQUAL (ICT Quality Index). The second domain comprised absenteeism-
related items (ST062Q01TA–ST062Q03TA), which measured students’ frequency of missing 
school or arriving late, serving as behavioral indicators of engagement and discipline. The third 
domain included a control variable for student gender (ST004D01T; male or female), enabling 
the model to account for potential gender-related differences in mathematics performance.  

First, the dataset underwent a series of preprocessing procedures. Invalid or special 
response codes were treated as missing values following OECD conventions (e.g., 9, 10, or 
negative entries) for ensuring cross-country comparability (PISA 2022 Technical Report, 
2024).Variables with more than 60% missingness were excluded from the analysis, and the 
remaining missing values were imputed using the median of each variable.  The variable 
HOMEPOS was excluded due to excessive missingness (>60%), while all remaining features 
were used in model development. The dataset was balanced across achievement classes, with 
2,537 low-achievement and 2,538 high-achievement cases in the training set and 1,082 and 
1,093 cases, respectively, in the testing set. After that, mathematics scores were transformed 
into a binary outcome (high vs. low achievement) using the median value of the training set 
only, preventing any data leakage into the test set. 

2.2. Classification and Hyperparameter selection 

After pre-processing, the dataset was divided into training (70%) and testing (30%) 
subsets using a stratified random split with a fixed random seed (N=42) to ensure 
reproducibility. Then, three tree-based classifiers such that Random Forest classifier (Breiman, 
2001) , ExtraTree (Geurts et al., 2006) and GradientBoosting (Friedman, 2001) were utilized to 
classify low and high mathematics achievement. The hyperparameters of the classifiers were 
optimized by the RandomizedSearchCV with 20 randomized iterations and threefold cross-
validation. The hyperparameter search includes the number of estimators, maximum tree depth, 
minimum samples required for splits and leaves, learning rate (for Gradient Boosting), 
subsampling ratios, and feature selection strategies (sqrt or log2). The area under the receiver 
operating characteristic curve (ROC–AUC) served as the primary metric for model tuning. 
Then, model performance was evaluated on the test set using accuracy, macro-averaged F1, and 
ROC–AUC scores. Finally, feature importance values were extracted from the optimized 
classifiers using Gini impurity criterion which quantifies node heterogeneity(Breiman et al., 
2017). Features yielding greater reductions in impurity across all trees were assigned higher 
importance scores to highlight the relative contribution of each predictor to mathematics 
achievement.  
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2.3. Statistical Analyses  

A two-sided Mann–Whitney U tests (Mann & Whitney, 1947), which are non-
parametric statistical test used to evaluate whether two independent groups differ in the 
distribution of a continuous or ordinal variable, were applied to determine whether absenteeism 
(ST062Q01–03TA) and ICT-related indicators (ICTHOME, ICTAVHOM, ICTQUAL) 
differed significantly between high and low mathematics achievement groups.  The remaining 
of features such as ESCS, HISEI, HISCED, PAREDINT, WORKHOME, HOMEPOS were not 
included in the statistical analyses because they were OECD- standardized composite indexes.  
In order to provide a clear visualization of distributional differences, skewness patterns, and 
potential group separation, violin plots were generated to visually compare the distribution of 
absenteeism and ICT-related variables between high and low mathematics achievement groups.  

 

3. RESULTS 

In this study, preprocessing steps include data cleaning, handling missing values, and 
converting the continuous PV1MATH score into high and low achievement groups using a 
median split.  Then, the cleaned dataset was divided in to training (70%) and testing set (30%) 
by random seed fixed stratified random split. After, three-tree based classifiers such that 
Random Forest, ExtraTrees and Gradient Boosting were utilized to separate high and low 
mathematic achievement. Model tuning was conducted to obtain optimal ROC–AUC score by 
RandomizedSearchCV algorithm (20 iteration, three-fold cross validation). The optimal 
hyperparameters of the classifiers were demonstrated in Table 2. After hyperparameter tuning, 
the classifiers were trained and tested to separate between low and high mathematic 
achievement.  

Classifier Optimal hyperparameters 

Random Forest n_estimators=339, max_depth=10, max_features='log2', 
min_samples_split=3, min_samples_leaf=2 

ExtraTree n_estimators=337, max_depth=10 

max_features='log2', min_samples_split=8, min_samples_leaf=4 

GradientBoosting n_estimators=364, learning_rate=0.03, max_depth=3, 
subsample=0.8 

Table 2:  Optimal hyperparameters of each classifier in the classification between low and high                                     
achievement mathematic groups. 
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Table 3 demonstrates that GradientBoosting provides most balanced and effective 
separation in the separation between low and high mathematics achievement with the highest 
accuracy, sensitivity and ROC-AUC of 67 %, 68% and 0.743, respectively.  Similarly, Random 
Forest classifier yields moderately strong and balanced performance in the classification of low 
and high mathematics achievement with an accuracy of 66.1%, sensitivity of 64.5%, specificity 
of 67.8%, and ROC-AUC of 0.729.  In comparison, ExtraTree provides a highest specificity of 
73.5% indicating strong effectiveness in identifying low-achieving students, whereas a 
sensitivity of 57.8% yields a higher rate of misclassification among high-achieving students.  

Feature importance analysis based on the Gini impurity criteria was visualized in the 
heatmap shown in Figure 1, illustrating the relative contribution of each feature across the three 
ensemble classifiers in distinguishing high and low mathematics achievement. In this heatmap, 
the x-axis represents the machine learning models (RandomForest, ExtraTrees, and 
GradientBoosting), and the y-axis lists all features included in the analysis. The color intensity 
within each cell indicates the magnitude of the feature’s importance, with darker shades 
reflecting stronger influence in the corresponding model. Across models, socioeconomic 
indicators such as ESCS, HISEI, and HISCED show the highest intensities and demonstrate 
consistent predictive power. ICT-related variables such as ICTQUAL and WORKHOME 
provide moderate contributions, while features like ICTHOME and ST004D01T appear with 
lighter intensities and show weaker or more model-specific relevance. Overall, the heatmap 
provides a concise comparison of how each classifier weights the input features and highlights 
the dominant role of socioeconomic background in predicting mathematics achievement. 

Classifier Accuracy Sensitivity Specificity  F1 ROC-
AUC 

RandomForest 66.1% 64.5% 67.8% 0.661 0.729 

ExtraTrees 65.6% 57.8% 73.5% 0.654 0.724 

GradientBoosting 67.0% 68.0% 66.1% 0.670 0.743 

RandomForest 66.1% 64.5% 67.8% 0.661 0.729 

Table 3. Performance metrics of each classifier in the classification between low and high 
achievement mathematic groups. 
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Finally, two-sided Mann-Whitney U test were employed to assess whether absenteeism 
and ICT-related indicators differed significantly between low and high achievement 
mathematic groups separately followed by violin plots for clear visualization as illustrated in 
Figure 2. For the attendance items (ST062Q01TA–ST062Q03TA), the statistical results 
showed significant group differences for ST062Q01TA (p = 1.63×10⁻⁹) and ST062Q03TA (p 
= 2.95×10⁻¹⁷), whereas ST062Q02TA did not exhibit a significant effect (p = 0.354). These 
findings are reflected in the violin plots, where ST062Q01TA and ST062Q03TA display visible 
shifts in median values and distributional density between groups, while ST062Q02TA shows 

substantial overlap consistent with the non-significant test outcome. For ICT-related variables 
(ICTHOME, ICTAVHOM, ICTQUAL), none of the Mann–Whitney U tests reached statistical 
significance (all p > 0.05), and the violin plots similarly illustrate overlapping distributions with 

 

Figure 2: Distribution of Absenteeism and ICT-Related Indicators by Achievement Group 

 

Figure 1: The heatmap of feature importance for each classifier in the classification 
between low and high low and high achievement mathematic groups. 
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comparable medians and variability across achievement levels. Taken together, the combined 
statistical and graphical evidence indicates that absenteeism patterns, but not ICT resource 
indicators, differentiate students’ mathematics achievement in the PISA 2022 Türkiye dataset. 

 

4. DISCUSSION  

This study investigated how socioeconomic, absenteeism-related, and ICT-related 
indicators contribute to predicting mathematics achievement in the PISA 2022 Türkiye dataset 
using three ensemble machine learning models. Among the classifiers, Gradient Boosting 
achieved the most balanced performance, while Random Forest also showed strong predictive 
ability. ExtraTrees produced the highest specificity but lower sensitivity, indicating that it was 
more effective at identifying low-achieving students than high-achieving ones, a pattern 
consistent with prior findings that extremely randomized tree models can exhibit greater 
variance and class-specific instability due to their high level of randomness(Fernández-Delgado 
et al., 2014). 

Across all models, feature importance results consistently highlighted socioeconomic 
indicators such as ESCS, HISCED, and HISEI as the most influential predictors of mathematics 
performance. ICT-related features made only moderate contributions, and gender showed 
minimal predictive value. These findings support prior evidence that socioeconomic 
background remains a dominant factor in explaining achievement differences. 

The Mann–Whitney U test results further showed that two absenteeism indicators 
significantly differentiated high and low achievement groups. This reinforces the established 
link between attendance patterns and academic outcomes(Gottfried, 2014; Kearney, 2008). In 
contrast, none of the ICT-related variables demonstrated significant group differences, and the 
corresponding violin plots showed highly overlapping distributions. This suggests that access 
to ICT resources alone does not translate into measurable differences in mathematics 
performance without considering how these resources are used(Hu et al., 2018; Skryabin et al., 
2015). 

5.CONCLUSION 

In summary, this study applied machine learning techniques to the Türkiye subsample 
of PISA 2022 in order to better understand how socioeconomic background, household context, 
absenteeism, and digital access indicators influence mathematics achievement. The findings 
reinforce the central claims outlined in the introduction: socioeconomic conditions remain the 
most powerful predictors of academic performance, reflecting long-standing patterns linked to 
parental education, occupational status, and access to cultural and material resources. 
Absenteeism indicators also contributed meaningfully, highlighting the importance of 
consistent school engagement for sustaining academic success. In contrast, ICT-related 
variables did not differentiate high- and low-achieving students, suggesting that access to 
technology alone is insufficient to generate measurable gains in mathematics outcomes. By 
leveraging ensemble-based classifiers, this study demonstrates the value of machine learning 
for capturing complex, nonlinear relationships within large-scale educational datasets and for 
revealing the relative weight of key determinants. Collectively, these results underscore the 
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need for policies that address socioeconomic inequalities, support regular attendance, and 
promote meaningful and pedagogically guided digital engagement. 

6.FUTURE WORK 

 Although the current study provides insightful information about the relative impact of 
behavioral, familial, socioeconomic, and digital factors on mathematical achievement, it should 
be noted that there are a number of limitations. Initially, the study used cross-sectional data 
from the PISA 2022 Türkiye subsample, which limits the ability to draw conclusions about 
causality and makes it impossible to monitor how learning outcomes evolve over time Second, 
whereas the GradientBoosting effectively captures nonlinear correlations, it remains a data-
driven approach, and unobserved contextual factors such as school quality, teacher 
effectiveness, or regional resource inequities may continue to contribute to unexplained 
variance. Additionally, the use of self-reported questionnaire items may introduce measurement 
bias, particularly for indicators related to ICT access and student behavior. Future research 
should address these limitations by employing longitudinal and cross-country datasets to better 
capture causal pathways and temporal dynamics in the relationship between digital access, 
family engagement, and academic performance. Integrating sophisticated modeling techniques 
with artificial intelligence frameworks such as deep learning techniques might enable 
researchers to disentangle individual, household, and school-level effects, thereby providing a 
more comprehensive understanding of educational disparities.  
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1. Introduction 

Retrieval-Augmented Generation (RAG) reduces hallucinations by grounding language models 
in external evidence. Traditional RAG systems process text effectively but fail when documents 
contain tables, charts, diagrams, and images. Converting visual elements to text through Optical 
Character Recognition (OCR) destroys spatial layout, structural hierarchies, and comparative 
relationships. This information loss propagates through retrieval and generation stages, 
producing hallucinations rooted in incomplete context. Multimodal RAG (MM-RAG) 
addresses this limitation by processing heterogeneous data types within unified or aligned 
representation spaces.  

This survey makes three contributions to the MM-RAG literature: 

• Architectural Taxonomy: We trace the evolution from discrete OCR-based pipelines to 
unified vision-language models and emerging agentic systems, clarifying trade-offs 
between semantic fidelity, computational efficiency, and hallucination risk. 

• Hallucination Analysis: We establish a taxonomy distinguishing factuality error 
(contradicting real-world facts) from faithfulness errors (contradicting provided 
context), then categorize mitigation strategies by architectural intervention point and 
hallucination type. 

• Evaluation Synthesis: We systematically compare benchmarks from object-level 
metrics (POPE) to comprehensive multi-dimensional frameworks (MMHal-Bench, 
TREC RAG Track), identifying gaps in current evaluation protocols and documenting 
reproducible resources for rigorous experimentation. 

The remainder of this paper is organized as follows. Section 2 provides background on text-
only RAG and motivates the transition to multimodal paradigms. Section 3 categorizes MM-
RAG architectures from OCR-based approaches to late-interaction models. Section 4 analyzes 
hallucination mechanisms specific to multimodal contexts and their architectural dependencies. 
Section 5 surveys mitigation strategies including self-verification, visual grounding, and 
adaptive retrieval. Section 6 examines evaluation benchmarks and protocols. Section 7 
investigates applications in medical imaging, financial analysis, and legal document processing. 
Section 8 concludes with open challenges and future research directions. 

 

2. Background and Related Study 

2.1 Text-Only RAG: Evolution and Core Paradigms 
RAG augments parametric knowledge in language models with dynamic, verifiable non-
parametric information retrieved from external sources (Lewis et al., 2020). Traditional RAG 
operates through a retrieve-then-generate workflow. The system first converts a user query into 
a vector representation, retrieves semantically similar text fragments from an external 
knowledge base, then presents these fragments as context to the language model for generation. 
This architecture addresses the limitations of purely parametric models, which suffer from 
outdated knowledge, factual errors, and hallucinations when generating content beyond their 
training data. 

The evolution of RAG architectures follows three distinct paradigms (Gao et al., 2023). Naive 
RAG employs simple retrieve-then-generate workflows with fixed chunking strategies and 
single-stage retrieval. Advanced RAG introduces pre-retrieval optimization (query rewriting, 
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knowledge base, then presents these fragments as context to the language model for generation. 
This architecture addresses the limitations of purely parametric models, which suffer from 
outdated knowledge, factual errors, and hallucinations when generating content beyond their 
training data. 

The evolution of RAG architectures follows three distinct paradigms (Gao et al., 2023). Naive 
RAG employs simple retrieve-then-generate workflows with fixed chunking strategies and 
single-stage retrieval. Advanced RAG introduces pre-retrieval optimization (query rewriting, 

expansion) and post-retrieval refinement (reranking, context compression). Modular RAG 
decomposes the pipeline into specialized components for indexing, retrieval, and generation, 
enabling domain-specific customization and iterative refinement. Recent studies further 
extends these paradigms through self-verification mechanisms, where models assess retrieval 
relevance and generation faithfulness before outputting results (Asai et al., 2024). While these 
advances improve text-based retrieval and generation, they assume a fundamental constraint: 
all information can be adequately represented as text. This assumption breaks down when 
documents contain non-textual elements such as tables, charts, diagrams, and images. 

2.2 The Limitations of Text-Only RAG in Visual Contexts 
Documents in critical domains inherently combine text and visual modalities. Academic papers 
integrate equations, plots, and architectural diagrams. Financial reports embed earnings tables, 
trend charts, and performance comparisons. Medical records pair clinical notes with X-rays, 
CT scans, and pathology images. Technical manuals present assembly instructions through 
annotated photographs and exploded-view diagrams. In these contexts, visual elements are not 
supplementary—they carry information that text cannot adequately represent. Traditional text-
based RAG faces fundamental limitations when processing multimodal documents. Converting 
visual content to text through OCR destroys three critical information types. Spatial layout 
disappears when a two-column financial table becomes a linear text sequence, severing 
relationships between row headers and data cells. Visual comparisons vanish when a bar chart 
showing quarterly growth trends reduces to isolated numbers without graphical context. 
Structural hierarchies flatten when nested diagrams with parent-child relationships become 
unordered text fragments (Faysse et al., 2024). Figure 1 compares traditional text-based RAG 
(1a) with MM-RAG (1b) architectures, showing how the integration of visual encoders 
transforms the process from a linear pipeline to a dual-stream alignment mechanism. 

 

(a) 

 

(b) 

Fig. 1. Traditional Text-Only RAG (a) vs. MM-RAG (b). 

The multimodal architecture introduces vision encoders and cross-modal alignment layers to 
preserve visual semantics alongside textual information. 
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These information losses propagate through the entire pipeline. During retrieval, semantically 
relevant contexts may be missed because OCR-converted text fails to capture the meaning 
embedded in visual layout or graphical relationships. During generation, models produce 
hallucinations when attempting to reconstruct information from incomplete textual proxies of 
visual content. The result is factually incorrect outputs or responses that contradict the original 
document's meaning. MM-RAG addresses these limitations by processing text, images, and 
other modalities within unified or aligned representations (Y. Li et al., 2025; Wasserman et al., 
2025). Rather than converting visual content to text, MM-RAG systems encode images directly 
using vision transformers or multimodal encoders, then align these representations with textual 
embeddings for joint retrieval and generation. This approach preserves spatial relationships, 
visual hierarchies, and graphical semantics that OCR-based pipelines inevitably lose. 

2.3 Related Surveys and Positioning of This Study 
Several recent surveys provide complementary perspectives on RAG systems and multimodal 
learning. Gupta et al. (2024) trace RAG's evolution from foundational retrieval methods to 
enterprise-scale deployments, documenting architectural choices across 150+ systems but 
focusing primarily on text-based applications. Yu et al. (2025) establish unified evaluation 
frameworks specifically for retrieval-augmented generation, addressing benchmark 
fragmentation but not multimodal-specific challenges. Tonmoy et al. (2024) comprehensively 
survey hallucination mitigation techniques in large language models, covering both parametric 
and retrieval-based approaches, while Wasserman et al. (2025) introduce benchmarks for real-
world multimodal retrieval scenarios. 

Within the multimodal domain, foundational work has established key technical paradigms. 
Self-RAG (Asai et al., 2024) introduced dual-verification mechanisms for retrieval-generation 
alignment, demonstrating that models can learn to assess relevance and faithfulness through 
self-reflection. MuRAG (W. Chen et al., 2022) pioneered multimodal memory integration for 
open-domain question answering, showing that external visual-textual memory significantly 
improves performance on questions requiring visual reasoning. Es et al. (2024) developed 
reference-free automated evaluation frameworks that enable scalable assessment of RAG 
system quality without ground-truth labels. Recent studies on MM-RAG have explored diverse 
architectural designs, retrieval strategies, and evaluation settings, making it difficult to directly 
compare their objectives and empirical findings Table 1 categorizes representative studies, 
revealing a diverse landscape of architectural objectives and findings. 
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Table 1. Comparative Summary of the Objectives, Methods, and Findings of Key Studies in the 
MM-RAG Literature 

Author(s) & 
Year 

Objective of the 
Study Methodology Key Findings Conclusion/ 

Implications 

Drushchak et 
al., (2025) 

To develop a 
unified MM-RAG 
system capable of 
processing 
heterogeneous data 
types, including 
text, tables, images, 
and videos. 

Experimental: 
Evaluated on Dell 
server 
documentation 
(PDFs and 
videos) using 
AWS 
infrastructure, 
LangChain, and 
Claude 3.5 
Sonnet. 

1. Achieved high 
retrieval accuracy 
on structured text 
and tabular data.2. 
Performance on 
image- and video-
based queries 
remained lower 
than on text 
queries.3. The 
unified framework 
provided a robust 
pipeline for 
heterogeneous data 
sources. 

Integrating 
multiple data 
modalities into a 
single pipeline is 
valuable; 
however, LLM 
capabilities for 
unstructured 
modalities such 
as video still 
require further 
improvement. 

Chen et al., 
(2022) 

To improve 
question-answering 
performance by 
proposing MuRAG, 
a model capable of 
accessing external 
multimodal 
(image–text) 
memory. 

Experimental: 
Pre-trained on 
LAION, CC, and 
VQA datasets; 
evaluated on 
WebQA and 
MultimodalQA 
benchmarks. 

1. Achieved 10–
20% higher 
accuracy compared 
to existing 
baselines.2. 
Significantly 
outperformed text-
only models on 
questions requiring 
visual reasoning. 

Multimodal 
retrieval enables 
language models 
to “see,” reducing 
hallucinations 
and improving 
visual grounding. 
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Most et al., 
(2025) 

To compare vision-
based RAG 
(ColPali) with 
OCR-based RAG 
(Llama 3.2) under 
varying document 
quality conditions. 

Experimental: 
Introduced the 
DocDeg dataset 
containing 
degraded and 
noisy documents; 
evaluated 
retrieval accuracy 
and semantic 
answer quality. 

vision-language 
model (VLM)-
based systems 
(ColPali/ColQwen) 
are superior in 
computational 
efficiency and 
memory usage, but 
OCR-based systems 
(especially Llama 
3.2 90B) achieve 
higher access 
success rates on 
degraded 
documents. This 
highlights a trade-
off between speed 
and storage 
efficiency on one 
hand and semantic 
accuracy on the 
other. 

In real-world 
scenarios 
involving low-
quality scans, 
OCR-based 
approaches 
remain more 
robust; vision-
language models 
require further 
scaling and 
robustness 
improvements. 

Chen et al., 
(2025) 

To propose 
CMRAG (Co-
Modality-Based 
RAG), a framework 
combining textual 
and visual 
modalities for 
document retrieval. 

Experimental: 
Constructed a 
triplet dataset 
(query, text, 
image); evaluated 
Unified Encoding 
Models (UEM) 
and Unified 
Cross-Modality 
Retrieval 
(UCMR). 

1. Consistently 
outperformed 
unimodal (text-only 
or image-only) 
approaches.2. 
Statistical 
normalization of 
text and image 
similarity scores 
significantly 
improved retrieval 
effectiveness. 

Since visual 
documents 
require both 
semantic text 
understanding 
and visual 
perception, joint 
utilization of both 
modalities yields 
the most effective 
results. 

Peng et al., 
(2025) 

To introduce 
UniDoc-Bench, a 
benchmark for 
document-centric 
MM-RAG, and to 
compare different 
retrieval strategies. 

Benchmark 
Construction / 
Experimental: 
Built on 70,000 
pages of real-
world PDFs and 
1,600 manually 
verified QA pairs. 

1. Text–image 
fusion (separate 
retrieval followed 
by fusion) achieved 
the best 
performance 
(68.4% 
completeness).2. 
Joint multimodal 
embedding models 
underperformed 
compared to late 
fusion strategies. 

At present, 
combining strong 
unimodal 
retrievers for text 
and images is 
more effective 
than relying on a 
single joint 
multimodal 
model. 
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significantly 
improved retrieval 
effectiveness. 

Since visual 
documents 
require both 
semantic text 
understanding 
and visual 
perception, joint 
utilization of both 
modalities yields 
the most effective 
results. 

Peng et al., 
(2025) 

To introduce 
UniDoc-Bench, a 
benchmark for 
document-centric 
MM-RAG, and to 
compare different 
retrieval strategies. 

Benchmark 
Construction / 
Experimental: 
Built on 70,000 
pages of real-
world PDFs and 
1,600 manually 
verified QA pairs. 

1. Text–image 
fusion (separate 
retrieval followed 
by fusion) achieved 
the best 
performance 
(68.4% 
completeness).2. 
Joint multimodal 
embedding models 
underperformed 
compared to late 
fusion strategies. 

At present, 
combining strong 
unimodal 
retrievers for text 
and images is 
more effective 
than relying on a 
single joint 
multimodal 
model. 

Lumer et al., 
(2025) 

To compare text-
based (visual-to-
text conversion) 
retrieval with direct 
multimodal 
embedding-based 
retrieval in financial 
documents. 

Experimental: 
Evaluated on a 
financial 
earnings-call 
dataset using Jina 
v4 multimodal 
embeddings and 
OpenAI models; 
employed LLM-
as-a-Judge 
evaluation. 

1. Direct 
multimodal 
retrieval improved 
mean average 
precision (mAP@5) 
by 32%.2. 
Preserving visual 
data in its native 
form reduced 
hallucinations 
compared to text 
summarization. 

Converting visual 
information 
(charts, tables) 
into textual 
summaries leads 
to information 
loss; direct 
multimodal 
embeddings yield 
more accurate 
and reliable 
results. 

Abootorabi 
et al., (2025) 

To 
comprehensively 
survey existing 
methods, datasets, 
and open challenges 
in MM-RAG. 

Survey / 
Literature 
Review: 
Taxonomic 
analysis of 
existing MM-
RAG approaches. 

1. Identified 
encoding, retrieval, 
fusion, and 
generation as core 
pipeline stages.2. 
Highlighted cross-
modal alignment 
and reasoning as 
key challenges. 

Future research 
should focus on 
agentic systems 
and dynamic 
modality 
selection with 
self-corrective 
capabilities. 

 

Table 1 focuses on representative and influential studies rather than providing an exhaustive 
list of all MM-RAG publications. As summarized in Table 1, existing MM-RAG studies differ 
substantially in both their experimental setups and targeted modalities. While recent works 
demonstrate clear gains from multimodal retrieval and fusion, they also reveal persistent 
limitations related to document quality, unstructured visual content, and cross-modal alignment. 
These observations motivate the architectural analysis presented in the next section 

3. Architectural Paradigms in Multimodal RAG 

This section systematically categorizes MM-RAG architectures through their fundamental 
design choices: how visual content is encoded, how text and images are aligned, and how 
retrieval granularity is determined. We trace the evolution from discrete OCR-based pipelines 
to unified vision-language embeddings and late-interaction mechanisms, clarifying the trade-
offs between semantic fidelity, computational cost, and hallucination risk. Figure 2 illustrates 
the overall end-to-end architecture of a representative MM-RAG pipeline. The framework 
integrates modality-aware query processing, multi-stage retrieval, cross-modal fusion, and 
post-generation verification to mitigate hallucination and improve grounding 
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Fig. 2. General workflow of the MM-RAG architecture. 
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Rather than representing a single implementation, this figure abstracts common design patterns 
observed across recent MM-RAG systems and highlights emerging components such as 
adaptive context selection and post-generation verification. 

 3.1 OCR-Based Pipelines: Advantages, Limitations, and Modern Variants 
OCR-based workflows represent the first generation of MM-RAG architectures. These systems 
convert visual content to plain text using optical character recognition, then apply standard text 
retrieval methods. This approach offers significant engineering advantages. It leverages mature 
text indexing infrastructure that has been refined over decades. It requires no modification to 
existing embedding models like BERT or sentence-transformers. It enables seamless 
integration with legacy RAG systems deployed in production environments (Lee et al., 2024). 
However, performance depends on OCR quality and document condition. Modern OCR with 
large models (Llama 3.2 90B) achieves higher recall than vision embeddings on degraded 
documents. The fundamental limitation of OCR-based approaches is information loss during 
modality conversion (Faysse et al., 2024). Three critical information types disappear in the OCR 
pipeline: 

• Spatial Layout: A two-column financial table becomes a linear text sequence. Row-
column relationships dissolve. Header associations vanish. The semantic structure that 
makes tabular data interpretable is flattened into an unstructured string. 

• Visual Comparisons: A bar chart showing quarterly growth trends converts to isolated 
numbers. The visual magnitude comparison that enables rapid pattern recognition is 
lost. Readers cannot reconstruct trend direction or relative performance from 
disaggregated values. 

• Structural Hierarchies: Nested diagrams with parent-child relationships become 
unordered text fragments. Flowcharts lose directional arrows. Organization charts lose 
reporting structures. The compositional semantics encoded in visual layout cannot be 
preserved in linearized text (Faysse et al., 2024). 

These losses propagate through the entire MM-RAG pipeline. During retrieval, semantically 
relevant contexts may be missed because OCR-converted text fails to capture meaning 
embedded in visual layout. During generation, models produce hallucinations when attempting 
to reconstruct information from incomplete textual proxies. A question about quarterly 
performance in a bar chart may retrieve text mentioning specific numbers but lacking the 
comparative context required to answer correctly. Despite these limitations, recent advances in 
OCR and vision-language models partially mitigate degradation effects under noisy conditions. 

• Modern OCR Variants Show Resilience: Recent studies reveal a counter-narrative to 
the vision-first paradigm. Most et al. (2025) demonstrate that state-of-the-art OCR 
pipelines utilizing large vision-language models (e.g., Llama 3.2 90B) exhibit greater 
robustness on degraded or noisy documents compared to vision-based embeddings like 
ColPali, achieving higher scores on retrieval metrics across all tested degradation levels. 
While VLM-based systems offer superior computational efficiency and storage savings, 
OCR approaches enhanced with large models show higher retrieval recall when 
processing low-quality scans, faded text, or documents with complex backgrounds. This 
suggests a fundamental trade-off: vision embeddings excel at preserving layout 
semantics on high-quality documents, while robust OCR pipelines maintain text 
extraction fidelity across varying document conditions. 

• Hybrid Strategies: Practical systems often combine OCR with visual processing. 
Methods like DePlot translate plots into structured tables, preserving quantitative 
relationships while enabling text-based retrieval (Liu et al., 2022). Late-interaction 
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retrieval models such as ColBERT apply multi-vector re-ranking to OCR output, 
partially recovering fine-grained semantic distinctions lost during conversion (Khattab 
  Zaharia, 2020). Despite these enhancements, OCR-based architectures remain 
fundamentally limited by the irreversibility of information loss during the visual-to-text 
transformation. 

3.2 Dense Multimodal Embeddings: CLIP, SigLIP, and Cross-Modal Alignment 
To overcome OCR limitations, unified multimodal embedding approaches process text and 
images within aligned vector spaces. These architectures encode both modalities through 
separate encoders—typically vision transformers for images and BERT-style transformers for 
text—then align the resulting embeddings through contrastive learning (Radford et al., 2021).  

Contrastive Language-Image Pre-training (CLIP): CLIP pioneered large-scale vision-language 
alignment by training on 400 million image-text pairs scraped from the internet. The model 
computes similarity matrices over mini-batches and applies contrastive loss to push matched 
pairs closer while repelling mismatched pairs. CLIP's success demonstrated that web-scale 
noisy supervision enables zero-shot transfer to diverse visual tasks without domain-specific 
fine-tuning. However, CLIP's softmax-based contrastive loss requires global normalization 
across the entire batch, creating computational bottlenecks that limit batch size scaling (Radford 
et al., 2021) 

Sigmoid Loss for Improved Scaling (SigLIP): SigLIP addresses CLIP's scalability constraints 
by replacing contrastive softmax loss with pairwise sigmoid loss (X. Zhai et al., 2023). Unlike 
CLIP, which normalizes over all negative examples in a batch, SigLIP treats each image-text 
pair as an independent binary classification problem. This design enables efficient 
parallelization across devices and supports larger batch sizes, improving performance 
particularly at smaller scales where CLIP struggles. SigLIP models trained with sigmoid loss 
consistently outperform CLIP variants on zero-shot classification and image-text retrieval 
benchmarks while requiring less computation per training step. 

SigLIP 2: Enhanced Semantic Understanding: The recently released SigLIP 2 extends the 
original architecture with three additional training objectives. A localization-aware decoder 
adds spatial grounding capabilities. A global-local consistency loss improves fine-grained 
patch-level semantics through self-distillation. A masked prediction loss enhances dense feature 
quality for downstream tasks like segmentation and depth estimation. These enhancements 
yield significant gains on visually rich document retrieval tasks. The NaFlex variant supports 
dynamic resolution and aspect-ratio preservation, making SigLIP 2 particularly effective for 
OCR and document understanding applications where layout integrity matters   (Tschannen et 
al., 2025). However, SigLIP 2 shows lower retrieval performance than SigLIP on document 
tasks (MRR: 0.42 vs 0.47) due to training objective mismatch (W. Chen et al., 2025). 

Application to MM-RAG:  Dense embeddings enable retrieval systems to match queries with 
documents based on semantic similarity in joint text-image space. For document retrieval, 
images of entire pages are embedded alongside their textual content. Query embeddings are 
compared against this multimodal index using cosine similarity. However, single-vector 
representations suffer from information compression. A page containing multiple tables, charts, 
and text blocks must be summarized into a single 512 or 768-dimensional vector. This 
compression loses fine-grained details, making it difficult to distinguish between documents 
with similar global semantics but different specific content. Dense embeddings excel at coarse-
grained retrieval but struggle with precise localization (X. Chen et al., 2024; Grassucci et al., 
2025). 



International Studies in the Field of Computer Engineering - December 2025

29

retrieval models such as ColBERT apply multi-vector re-ranking to OCR output, 
partially recovering fine-grained semantic distinctions lost during conversion (Khattab 
  Zaharia, 2020). Despite these enhancements, OCR-based architectures remain 
fundamentally limited by the irreversibility of information loss during the visual-to-text 
transformation. 

3.2 Dense Multimodal Embeddings: CLIP, SigLIP, and Cross-Modal Alignment 
To overcome OCR limitations, unified multimodal embedding approaches process text and 
images within aligned vector spaces. These architectures encode both modalities through 
separate encoders—typically vision transformers for images and BERT-style transformers for 
text—then align the resulting embeddings through contrastive learning (Radford et al., 2021).  

Contrastive Language-Image Pre-training (CLIP): CLIP pioneered large-scale vision-language 
alignment by training on 400 million image-text pairs scraped from the internet. The model 
computes similarity matrices over mini-batches and applies contrastive loss to push matched 
pairs closer while repelling mismatched pairs. CLIP's success demonstrated that web-scale 
noisy supervision enables zero-shot transfer to diverse visual tasks without domain-specific 
fine-tuning. However, CLIP's softmax-based contrastive loss requires global normalization 
across the entire batch, creating computational bottlenecks that limit batch size scaling (Radford 
et al., 2021) 

Sigmoid Loss for Improved Scaling (SigLIP): SigLIP addresses CLIP's scalability constraints 
by replacing contrastive softmax loss with pairwise sigmoid loss (X. Zhai et al., 2023). Unlike 
CLIP, which normalizes over all negative examples in a batch, SigLIP treats each image-text 
pair as an independent binary classification problem. This design enables efficient 
parallelization across devices and supports larger batch sizes, improving performance 
particularly at smaller scales where CLIP struggles. SigLIP models trained with sigmoid loss 
consistently outperform CLIP variants on zero-shot classification and image-text retrieval 
benchmarks while requiring less computation per training step. 

SigLIP 2: Enhanced Semantic Understanding: The recently released SigLIP 2 extends the 
original architecture with three additional training objectives. A localization-aware decoder 
adds spatial grounding capabilities. A global-local consistency loss improves fine-grained 
patch-level semantics through self-distillation. A masked prediction loss enhances dense feature 
quality for downstream tasks like segmentation and depth estimation. These enhancements 
yield significant gains on visually rich document retrieval tasks. The NaFlex variant supports 
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tasks (MRR: 0.42 vs 0.47) due to training objective mismatch (W. Chen et al., 2025). 

Application to MM-RAG:  Dense embeddings enable retrieval systems to match queries with 
documents based on semantic similarity in joint text-image space. For document retrieval, 
images of entire pages are embedded alongside their textual content. Query embeddings are 
compared against this multimodal index using cosine similarity. However, single-vector 
representations suffer from information compression. A page containing multiple tables, charts, 
and text blocks must be summarized into a single 512 or 768-dimensional vector. This 
compression loses fine-grained details, making it difficult to distinguish between documents 
with similar global semantics but different specific content. Dense embeddings excel at coarse-
grained retrieval but struggle with precise localization (X. Chen et al., 2024; Grassucci et al., 
2025). 

3.3 Late-Interaction Paradigms: ColPali and Multi-Vector Representations 
Late-interaction retrieval mechanisms address the compression limitations of dense 
embeddings by representing documents as multiple vectors—one per patch, token, or semantic 
unit. Rather than collapsing the entire document into a single embedding, late-interaction 
models preserve granular representations and defer similarity computation until query time. 

Contextualized Late Interaction over BERT(ColBERT): ColBERT introduced the late-
interaction paradigm for text retrieval. Instead of encoding a document as a single vector, 
ColBERT represents each document as a matrix where rows correspond to token embeddings. 
Query tokens are similarly embedded. Similarity is computed via MaxSim: for each query 
token, find the maximum cosine similarity with any document token, then sum across query 
tokens. This operation approximates token-level matching while maintaining computational 
efficiency through pre-computed document representations (Khattab   Zaharia, 2020). 

ColPali: ColPali extends ColBERT's architecture to multimodal documents by leveraging 
PaliGemma, a vision-language model that projects image patches into a language-aligned 
space.  ColPali treats each page as an image and divides it into a grid of patches. Each patch is 
encoded through PaliGemma's vision transformer and projected into a 128-dimensional 
embedding. Query tokens are similarly embedded. MaxSim-based late interaction computes 
patch-level similarity, enabling fine-grained matching between query concepts and specific 
visual regions. ColPali demonstrates state-of-the-art performance on the Visual Document 
Retrieval Benchmark (ViDoRe), particularly on visually complex tasks involving infographics, 
tables, and charts. It achieves an average nDCG@5 of 81.3 across ViDoRe tasks, significantly 
outperforming text-based baselines (BM25: 65.5, BGE-M3: 66-67)(Faysse et al., 2024). 
ColPali reduces OCR errors on high-quality documents. However, OCR-based systems 
outperform it on degraded inputs (Most et al., 2025). Hybrid approaches are common in 
practice. It has reduced certain error classes caused by OCR in experiments. However, hybrid 
solutions may still be used in practical deployments depending on data quality and application 
requirements. The model is end-to-end trainable and drastically simpler than traditional 
pipelines requiring document parsing, chunking, and OCR (Faysse et al., 2024). 

Interpretability Through Similarity Maps: A unique advantage of late-interaction architectures 
is interpretability. ColPali can visualize which image patches contribute most to a query match. 
For a query about "hourly trends," similarity maps highlight not only text mentioning "hourly" 
but also chart x-axes representing time, demonstrating genuine visual comprehension rather 
than OCR-based text matching. This interpretability supports debugging and trust in retrieval 
decisions, particularly in high-stakes domains like medical imaging or financial analysis. 

Computational Trade-offs: Late-interaction models require storing multiple vectors per 
document, increasing index size proportionally to the number of patches or tokens. A page with 
256 patches and 128-dimensional embeddings consumes 32KB per page compared to 512 bytes 
for a single-vector embedding. Efficient implementations leverage approximate nearest 
neighbor search (e.g., FAISS with product quantization) and early termination strategies to 
maintain sub-second query latency even on billion-scale corpora. However, storage and 
indexing costs remain substantially higher than dense embeddings (Faysse et al., 2024; Saad-
Falcon et al., 2024). 

3.4 Retrieval Granularity: From Short Chunks to Long-Context Units 
Beyond modality representation, MM-RAG architectures differ fundamentally in retrieval 
granularity. Traditional RAG systems chunk documents into short units (100-300 words) to fit 
within retriever and reader context windows. This design imposes a "heavy retriever, light 
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reader" paradigm where retrievers search over millions of short fragments, and readers generate 
from a few concatenated chunks. 

• Limitations of Short-Chunk Retrieval: Short chunking fragments semantic context. A 
financial table split across chunks loses row-column relationships. A multi-paragraph 
argument divided into separate chunks loses logical flow. This fragmentation introduces 
two failure modes. First, hard negatives become more likely. A chunk mentioning 
relevant keywords but lacking necessary context may rank highly yet mislead 
generation. Second, context incompleteness forces readers to infer missing information, 
increasing hallucination risk (Z. Jiang et al., 2024). 

• Long Retrieval Units (LongRAG): LongRAG proposes inverting the traditional design 
by retrieving entire documents or large coherent units (4K+ tokens) and delegating 
understanding to long-context language models (Z. Jiang et al., 2024). For Wikipedia-
based QA, LongRAG groups related articles into 4K-token units through hyperlink 
structure, reducing the corpus from 22 million short paragraphs to 700K long units. This 
30x reduction in corpus size dramatically improves retrieval precision: answer recall@1 
increases from 52% to 71% on Natural Questions without any model training. The long 
reader (e.g., GPT-4, Claude) processes concatenated retrieval units (approximately 30K 
tokens) in a single forward pass, leveraging its capacity to maintain coherence over 
extended context. 

• Granularity as an Architectural Choice:  Retrieval granularity interacts with both 
modality encoding and model capacity. OCR-based systems benefit less from long units 
because spatial layout is already lost; chunking merely reduces text volume without 
introducing additional semantic fragmentation. Vision-based late-interaction models 
like ColPali naturally align with page-level granularity, where each page is a single 
retrieval unit. Dense embeddings face a tension: longer units provide more context but 
compress more information into fixed-size vectors, potentially degrading match 
precision. Adaptive granularity strategies—dynamically selecting chunk size based on 
document structure and query complexity—represent an active research frontier (Z. 
Jiang et al., 2024; Saad-Falcon et al., 2024). 

3.5 Comparative Analysis: Trade-offs Across Paradigms 
Table 2 synthesizes the architectural trade-offs discussed in this section. It compares OCR-
based, dense multimodal, and late-interaction paradigms across multiple dimensions: visual 
data processing, spatial information preservation, retrieval mechanism, representation 
granularity, storage costs, and retrieval precision on structured documents. 

 

 

 

 

 

 

 

 



International Studies in the Field of Computer Engineering - December 2025

31

reader" paradigm where retrievers search over millions of short fragments, and readers generate 
from a few concatenated chunks. 

• Limitations of Short-Chunk Retrieval: Short chunking fragments semantic context. A 
financial table split across chunks loses row-column relationships. A multi-paragraph 
argument divided into separate chunks loses logical flow. This fragmentation introduces 
two failure modes. First, hard negatives become more likely. A chunk mentioning 
relevant keywords but lacking necessary context may rank highly yet mislead 
generation. Second, context incompleteness forces readers to infer missing information, 
increasing hallucination risk (Z. Jiang et al., 2024). 

• Long Retrieval Units (LongRAG): LongRAG proposes inverting the traditional design 
by retrieving entire documents or large coherent units (4K+ tokens) and delegating 
understanding to long-context language models (Z. Jiang et al., 2024). For Wikipedia-
based QA, LongRAG groups related articles into 4K-token units through hyperlink 
structure, reducing the corpus from 22 million short paragraphs to 700K long units. This 
30x reduction in corpus size dramatically improves retrieval precision: answer recall@1 
increases from 52% to 71% on Natural Questions without any model training. The long 
reader (e.g., GPT-4, Claude) processes concatenated retrieval units (approximately 30K 
tokens) in a single forward pass, leveraging its capacity to maintain coherence over 
extended context. 

• Granularity as an Architectural Choice:  Retrieval granularity interacts with both 
modality encoding and model capacity. OCR-based systems benefit less from long units 
because spatial layout is already lost; chunking merely reduces text volume without 
introducing additional semantic fragmentation. Vision-based late-interaction models 
like ColPali naturally align with page-level granularity, where each page is a single 
retrieval unit. Dense embeddings face a tension: longer units provide more context but 
compress more information into fixed-size vectors, potentially degrading match 
precision. Adaptive granularity strategies—dynamically selecting chunk size based on 
document structure and query complexity—represent an active research frontier (Z. 
Jiang et al., 2024; Saad-Falcon et al., 2024). 

3.5 Comparative Analysis: Trade-offs Across Paradigms 
Table 2 synthesizes the architectural trade-offs discussed in this section. It compares OCR-
based, dense multimodal, and late-interaction paradigms across multiple dimensions: visual 
data processing, spatial information preservation, retrieval mechanism, representation 
granularity, storage costs, and retrieval precision on structured documents. 

 

 

 

 

 

 

 

 

Table 2. Comparative Analysis of MM-RAG Architectures: From OCR-Based Baselines to Late 
Interaction Paradigms 

Aspect Naive  A  (OC  
 ased) 

 ense MM  A  
(C I  style) 

Col ali ( ate Interaction 
MM  A ) 

Visual Data 
Processing 

Visual content 
converted into plain 
text via OCR 

Visual content 
encoded into a single 
global embedding 

Visual content encoded as 
multiple patch-level 
embeddings 

Preservation of 
Spatial Information 

Lost due to 
linearization of visual 
structures 

Partially preserved 
through global visual 
semantics 

Largely preserved via 
layout-aware multi-vector 
representations 

Retrieval 
Mechanism 

Text matching using 
sparse (BM25) or 
dense retrieval 

Cosine similarity over 
single-vector 
embeddings 

MaxSim-based late 
interaction between query 
tokens and visual patches 

Representation 
Granularity 

Coarse, text-only 
segments 

Medium, global 
visual-text alignment 

Fine-grained, token–patch 
and layout-level alignment 

Storage and 
Indexing Cost Low Moderate High due to multi-vector 

indexing 

Retrieval Precision 
on Structured 
Documents 

Limited, sensitive to 
OCR errors 

Improved but prone to 
information 
compression 

High, particularly effective 
for tables, figures, and 
page layouts 

Current Status in the 
Literature 

Traditional; still 
necessary in 
constrained pipelines 

Widely adopted in 
multimodal retrieval 
systems 

Representative of recent 
state-of-the-art approaches 
in document-level MM-
RAG research (2024–
2025). 

 

Rather than presenting these paradigms as interchangeable alternatives, the following 
comparison highlights the concrete trade-offs they impose across retrieval precision, storage 
cost, and latency, thereby framing architectural choice as an explicit design decision rather than 
a purely empirical preference  

Key Insights:  First, OCR-based pipelines remain competitive in low-quality document settings 
despite semantic limitations. When documents contain degraded scans or handwritten text, 
robust OCR with large vision-language models (e.g., Llama 3.2 90B) outperforms vision-first 
embeddings (Most et al., 2025). Second, unified multimodal embeddings consistently 
outperform text-only baselines on visually grounded tasks but suffer from compression 
bottlenecks that limit fine-grained matching. Third, late-interaction architectures demonstrate 
superior performance on structured documents by preserving layout and enabling patch-level 
reasoning. However, no single architecture dominates across all scenarios. Optimal design 
depends on document characteristics (quality, layout complexity), query distribution (keyword-
based vs. conceptual), and operational constraints (latency, storage budget). Hybrid approaches 
that adaptively select architectures based on input properties represent a promising direction for 
future study. 
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4. Hallucination Mechanisms in Multimodal RAG 

Hallucination in large language models refers to outputs that appear fluent and plausible yet 
contradict provided context or established facts (Ji et al., 2023). In MM-RAG systems, this 
problem exhibits a more complex structure because errors can originate not only from 
generation but also from retrieval, representation, and cross-modal alignment stages. This 
section analyzes why multimodal architectures amplify hallucination risks, establishes a 
granular taxonomy of error types, and traces how architectural choices create distinct 
hallucination patterns. 

4.1 Why MM-RAG Amplifies Hallucination Beyond Text-Only Systems 
MM-RAG introduces three compounding factors absent in text-only systems that 
fundamentally increase hallucination risk. Cross-Modal Misalignment During Retrieval: Text-
based RAG retrieves semantically similar passages. Relevance is defined within a single 
modality using cosine similarity over text embeddings. MM-RAG must assess relevance across 
heterogeneous representations. A query about "quarterly revenue growth" may retrieve a 
document containing relevant keywords but irrelevant charts. The textual context mentions 
"growth," yet the chart shows decline. When the generator receives both text and image 
embeddings without verifying their semantic coherence, it may synthesize claims that conflict 
with the visual evidence. This cross-modal mismatch creates hallucinations rooted in 
incomplete or contradictory multimodal context. 

• Retrieval-Specific Information Loss:  Beyond the modality conversion losses discussed 
in Section 3.1, MM-RAG faces unique retrieval-stage failures. Dense multimodal 
embeddings compress entire pages into fixed-size vectors, losing fine-grained spatial 
relationships. A financial table showing quarterly performance may be indexed as a 
single 768-dimensional embedding. When retrieved, the generator cannot distinguish 
which specific row or column supports a claim, increasing fabrication risk. Late-
interaction models mitigate but do not eliminate this problem. While patch-level 
embeddings preserve layout, retrieval still operates on aggregated MaxSim scores. A 
page with ten charts may be retrieved based on global similarity, yet only two charts are 
relevant to the query. The generator must infer which visual elements matter, often 
incorrectly. 

• Cascading Error Propagation: Text-only RAG exhibits linear error propagation: 
incorrect retrieval leads to incorrect generation. MM-RAG exhibits cascading errors 
across modalities. Suppose OCR misreads a table value (e.g., "8.5%" as "85%"). The 
retriever correctly identifies the page as relevant. The generator, trusting the retrieved 
context, produces a response claiming "85% growth." The error originates in OCR but 
manifests as a generation hallucination. Unlike text typos, which readers often 
recognize, numerical errors from OCR appear internally consistent. The model has no 
signal indicating corruption. This cascading failure mode demonstrates how upstream 
modality-specific errors amplify downstream generation risks (Faysse et al., 2024; Most 
et al., 2025) 

• New findings reveal additional nuances Chen et al. (2025) demonstrate that omission 
hallucinations (failing to describe present objects) and fabrication hallucinations 
(describing absent objects) stem from distinct mechanisms. Omissions arise from low-
confidence visual encodings even when objects are correctly perceived. Fabrications 
result from overreliance on linguistic priors. Standard contrastive decoding methods 
reduce fabrications but exacerbate omissions, highlighting the need for mechanism-
specific interventions. 
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4. Hallucination Mechanisms in Multimodal RAG 
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result from overreliance on linguistic priors. Standard contrastive decoding methods 
reduce fabrications but exacerbate omissions, highlighting the need for mechanism-
specific interventions. 

4.2 A Granular Taxonomy: Factuality, Faithfulness, and Visual Error Types 
Recent surveys establish two foundational hallucination categories applicable across LLMs and 
multimodal systems (B. Chen et al., 2025; Huang et al., 2024). We distinguish errors that 
contradict external facts (factuality) from those that contradict the provided input (faithfulness), 
because mitigation strategies differ between them: 

• Factuality Hallucinations:  contradict established real-world facts. These errors manifest 
when a model generates content inconsistent with verifiable external knowledge. 
Example: "The Great Wall of China is visible from space with the naked eye" 
contradicts documented scientific evidence. In MM-RAG, factuality hallucinations 
often arise from parametric knowledge stored during pretraining rather than retrieved 
evidence. A model may override retrieved context with incorrect memorized facts, 
especially when retrieval confidence is low. 

• Faithfulness Hallucinations: diverge from provided input context or user instructions. 
These errors represent internal inconsistencies rather than factual inaccuracies. Three 
subtypes exist: *instruction inconsistency* (failing to follow user directives), *context 
inconsistency* (contradicting retrieved documents), and *logical inconsistency* 
(internal contradictions within generated output). In MM-RAG, context inconsistency 
is particularly critical. A generator produces faithfulness hallucinations when it 
fabricates claims unsupported by retrieved text or images, even if the claims are 
factually plausible. 

While this binary taxonomy applies broadly, visual tasks require finer granularity. Bai et al. 
(2024) categorize multimodal hallucinations (MMHal) into three visual-specific types: 

1. Object Category Hallucinations: The model identifies nonexistent objects or misclassifies 
existing ones. Example: detecting a "cat" where none exists or labeling a "bus" as a "truck." 
These errors reflect failures in basic visual perception or overconfident predictions driven by 
linguistic priors. POPE benchmark specifically measures object-level hallucinations through 
binary existence questions (Y. Li et al., 2023). 

2. Attribute Hallucinations: The model correctly identifies an object but misrepresents its visual 
properties such as color, shape, size, material, or count. Example: describing a "red car" as 
"blue," or claiming "three people" when five are present. Attribute errors often result from 
insufficient visual grounding. The model recognizes a car's presence but hallucinates properties 
based on statistical priors rather than visual evidence. 

3. Relation Hallucinations: The model accurately describes individual objects and their 
attributes but fails to capture spatial or semantic relationships. Example: stating "a person is 
holding a cup" when the cup is on the table, or describing "a dog next to a tree" when the dog 
is behind the tree. Relation hallucinations are particularly challenging because they require 
compositional reasoning across multiple visual elements. Recent benchmarks like Reefknot 
specifically target relation errors, distinguishing perceptive failures (incorrect spatial 
understanding) from cognitive failures (incorrect inferential reasoning) (B. Chen et al., 2025). 

This visual taxonomy is orthogonal to the factuality-faithfulness distinction. An object 
hallucination may be faithfulness-violating (describing an object absent from the image) or 
factuality-violating (describing an object type that does not exist in reality). Similarly, an 
attribute error may faithfully reflect the image but contradict world knowledge (e.g., describing 
a "blue banana" accurately shown in a doctored image). 
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4.3 Impact of Architectural Choices on Hallucination Patterns 
Different MM-RAG architectures exhibit distinct hallucination profiles. Understanding these 
dependencies enables targeted mitigation strategies. 

OCR-Based Pipelines: OCR-based systems primarily suffer from information loss during 
modality conversion (Section 3.1). However, their hallucination patterns extend beyond mere 
omissions. Numerical errors can occur when decimal points or digits are misread, particularly 
in degraded or noisy documents. Financial and medical applications are particularly vulnerable. 
A misread lab result or stock price propagates through retrieval and generation without 
correction. Structural errors occur when spatial layout information is lost. A two-column 
comparison table becomes a flat text sequence. The model cannot infer which values compare 
to which, leading to incorrect relationship claims. Recent study demonstrates that state-of-the-
art OCR pipelines utilizing large vision-language models (e.g., Llama 3.2 90B) exhibit greater 
robustness on degraded or noisy documents compared to vision-based embeddings, achieving 
higher semantic answer quality when document quality is poor (Most et al., 2025). This 
suggests a trade-off: VLM-based systems excel on clean documents with complex layouts, 
while robust OCR approaches maintain reliability across varying document conditions 

Dense Multimodal Embeddings: CLIP-style dense embeddings (Section 3.2) compress entire 
pages into single vectors. This compression creates attribute and relation hallucinations. A page 
with multiple objects may be retrieved based on global semantic similarity, yet the generator 
lacks fine-grained spatial information to verify relationships. Experiments show that dense 
retrievers excel at coarse-grained tasks (e.g., "find documents about quarterly earnings") but 
struggle with specific claims (e.g., "verify the exact percentage in the Q2 bar chart"). The model 
retrieves relevant documents but generates attribute details from parametric knowledge rather 
than visual evidence (X. Chen et al., 2024). 

Late-Interaction Models: ColPali and similar late-interaction architectures (Section 3.3) 
dramatically reduce object category hallucinations. Patch-level embeddings enable precise 
localization. The model can verify whether an object exists in a specific image region, reducing 
false positives in POPE benchmarks by 15-20% compared to dense embeddings (Faysse et al., 
2024). However, late-interaction models still struggle with relation hallucinations. MaxSim 
scoring identifies relevant patches but does not model inter-patch relationships. A query about 
"spatial arrangement" may retrieve patches showing individual objects but fail to encode their 
relative positions. Recent study on scene graph representations addresses this limitation by 
explicitly modeling object relationships, but integration into scalable RAG systems remains an 
open challenge (X. Chen et al., 2024). 

Granularity Effects: LongRAG's long retrieval units (Section 3.4) reduce hard negative 
retrievals, indirectly mitigating faithfulness hallucinations. When retrieval units preserve full 
document context, generators receive coherent semantic structures rather than fragmented 
chunks. Experiments show that retrieval precision and answer accuracy improve when moving 
from short 300-word chunks to long 4K-token units, with Exact Match scores increasing from 
42% to 59% when using grouped documents (Z. Jiang et al., 2024). However, long contexts 
introduce a different risk: saliency bias. Generators may attend disproportionately to early 
content, ignoring critical visual elements appearing later in long documents. This attention 
allocation failure creates omission hallucinations, where present information is overlooked 
rather than fabricated. 
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Granularity Effects: LongRAG's long retrieval units (Section 3.4) reduce hard negative 
retrievals, indirectly mitigating faithfulness hallucinations. When retrieval units preserve full 
document context, generators receive coherent semantic structures rather than fragmented 
chunks. Experiments show that retrieval precision and answer accuracy improve when moving 
from short 300-word chunks to long 4K-token units, with Exact Match scores increasing from 
42% to 59% when using grouped documents (Z. Jiang et al., 2024). However, long contexts 
introduce a different risk: saliency bias. Generators may attend disproportionately to early 
content, ignoring critical visual elements appearing later in long documents. This attention 
allocation failure creates omission hallucinations, where present information is overlooked 
rather than fabricated. 

4.4 Emerging Insights: Omission vs. Fabrication Mechanisms 
Recent empirical studies challenge the assumption that all hallucinations share a common 
cause. Traditional mitigation strategies apply uniform interventions, yet results show 
asymmetric effects. Contrastive decoding reduces fabrications (describing absent objects) but 
increases omissions (failing to describe present objects). This divergence suggests distinct 
underlying mechanisms (B. Chen et al., 2025).  

Fabrication Hallucinations: stem from overreliance on linguistic priors. Pre-trained language 
models encode statistical regularities ("bananas are yellow," "dogs chase cats"). When visual 
evidence is weak or ambiguous, these priors dominate generation. Contrastive decoding 
suppresses outputs driven by text-only distributions, effectively reducing fabrications. 
However, aggressive suppression also penalizes correct but statistically common descriptions. 

Omission Hallucinations: arise from low-confidence visual encodings. Even when vision 
encoders correctly perceive an object, the cross-modal projection layer may assign low 
probability to the corresponding linguistic token. During generation, the model filters low-
confidence predictions, causing omissions. This mechanism explains why increasing model 
scale alone does not eliminate hallucinations. Larger models amplify both correct and incorrect 
priors, improving fabrication rates but not addressing confidence calibration failures. 

These insights motivate mechanism-specific interventions. Fabrications require visual 
grounding and contrastive decoding (Section 5.3). Omissions require confidence calibration 
and visual-linguistic alignment refinement (Section 5.4). Unified mitigation strategies that 
ignore mechanistic differences achieve suboptimal performance across both error types. 

The taxonomy introduced above distinguishes hallucinations not only by their observable form 
(object, attribute, relation) but also by their underlying mechanism (fabrication versus 
omission). These distinctions are critical, as different mitigation strategies intervene at different 
stages of the MM-RAG pipeline and therefore target different error mechanisms. Accordingly, 
the following section organizes mitigation approaches in relation to the specific failure modes 
they are designed to address 

5. Mitigation Strategies for Hallucination Reduction 

The hallucination mechanisms analyzed in Section 4 reveal that errors originate at multiple 
pipeline stages and across modalities. Effective mitigation therefore requires targeted 
interventions calibrated to specific failure modes. This section surveys four complementary 
strategies: self-verification through Chain-of-Verification, adaptive retrieval with Self-RAG, 
visual grounding techniques, and confidence calibration mechanisms. We conclude with a 
comparative analysis clarifying when each approach applies and how they compose in 
production systems. Importantly, while this strategies is effective at reducing fabrication-type 
hallucinations, it introduces non-trivial latency overheads and may exacerbate omission errors, 
underscoring the need to evaluate mitigation techniques as trade-offs rather than universally 
beneficial add-ons. 

5.1 Chain-of-Verification: Iterative Self-Correction 
Chain-of-Verification (CoVe) introduces a four-stage process where models generate, verify, 
and revise their outputs before presenting final responses (Dhuliawala et al., 2024). The 
workflow proceeds as follows.  

• Draft Generation: The model produces an initial response to the query without external 
verification. This baseline response may contain hallucinations due to parametric 
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knowledge gaps or retrieval failures. Verification Planning: The model generates a set 
of verification questions designed to test factual claims in the draft. For example, if the 
draft states "The Mexican-American War occurred from 1846 to 1848," a verification 
question might ask "When did the Mexican-American War start and end " Crucially, 
these questions are not templated. The model formulates them autonomously, enabling 
coverage of diverse claim types.  

• Independent Execution:Verification questions are answered independently, without 
conditioning on the original draft. This prevents the model from simply parroting the 
initial response. The independent execution breaks confirmation bias, forcing the model 
to re-derive facts from parametric knowledge or retrieved evidence.  

• Revised ResponseThe model compares verification answers against draft claims, 
identifies inconsistencies, and generates a corrected final response. 

Empirical results demonstrate CoVe's effectiveness across multiple tasks. On Wikidata list-
based questions, CoVe improves test precision from 0.17 to 0.36, reducing hallucinated entities 
by 77% (from 2.95 to 0.68 negatives per response) while maintaining non-hallucination 
coverage (Dhuliawala et al., 2024). On closed-book MultiSpanQA, CoVe increases F1 score 
by 23% (from 0.39 to 0.48). For long-form biography generation, CoVe-enhanced Llama2 
outperforms InstructGPT, ChatGPT, and PerplexityAI on FactScore metrics, demonstrating 
that self-verification scales to complex generation tasks. 

• Multimodal Extension: In MM-RAG contexts, CoVe can verify visual claims by 
generating questions about image content. For instance, if a model describes "three 
people standing near a car," CoVe generates verification questions like "How many 
people are in the image " and "What objects are present " Answering these questions 
independently with visual grounding prevents linguistic priors from overriding visual 
evidence. However, CoVe's performance is bounded by the base model's reasoning 
capacity. Verification questions are answered more accurately than the original query, 
but complex multi-hop reasoning or rare factual knowledge remains challenging. CoVe 
does not eliminate hallucinations completely, reducing them by approximately 40-60% 
depending on task complexity. Errors in reasoning steps or factual gaps in parametric 
knowledge persist despite verification loops. 

5.2 Self-RAG: On-Demand Retrieval and Reflection Tokens 
Traditional RAG systems retrieve a fixed number of passages for every query, regardless of 
whether external knowledge improves response quality. This indiscriminate retrieval introduces 
two failure modes. First, unnecessary retrieval adds latency and computational cost for queries 
answerable from parametric knowledge. Second, irrelevant passages confuse generation, 
degrading output quality even when the model could answer correctly without retrieval. Self-
RAG addresses these limitations through adaptive retrieval controlled by reflection tokens 
(Asai et al., 2024). The framework trains a language model to generate special tokens that 
trigger retrieval, assess passage relevance, and verify output factuality. The training process 
involves three components. A critic model predicts when retrieval would improve generation. 
A retriever supplies passages on-demand. A generator produces outputs interleaved with 
reflection tokens that assess retrieval necessity, relevance, and support. During inference, the 
model dynamically decides whether to retrieve, evaluates retrieved contexts, and generates 
responses only when evidence supports claims. 

Retrieve tokens indicate whether external knowledge would improve the response. The model 
generates [Retrieve=Yes] when the query requires factual information absent from parametric 
knowledge, and [Retrieve=No] when sufficient internal knowledge exists. Relevance tokens 
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Retrieve tokens indicate whether external knowledge would improve the response. The model 
generates [Retrieve=Yes] when the query requires factual information absent from parametric 
knowledge, and [Retrieve=No] when sufficient internal knowledge exists. Relevance tokens 

assess whether retrieved passages contain information pertinent to the query. The model scores 
passages with [Relevant] or [Irrelevant] tags, filtering low-quality contexts before generation. 
Support tokens verify whether generated claims are grounded in retrieved evidence. The model 
assigns [Fully Supported], [Partially Supported], or [No Support] labels to each generated 
segment, enabling segment-level attribution. Utility tokensevaluate overall response quality 
considering both relevance and support. The model assigns [5], [4], [3], [2], or [1] utility scores, 
facilitating beam search over candidate generations. 

Experiments demonstrate Self-RAG's superiority across six tasks. On PubHealth fact-checking, 
Self-RAG (7B parameters) achieves 72.4% accuracy, outperforming retrieval-augmented 
ChatGPT (54.7%) and standard ChatGPT (70.1%), demonstrating that selective retrieval and 
reflection tokens reduce hallucinations effectively. On long-form generation (Biography), Self-
RAG achieves a FactScore of 81.2, significantly outperforming the baseline of 55.9, 
demonstrating that selective retrieval and reflection tokens reduce hallucinations without 
sacrificing generation fluency (Asai et al., 2024). 

Multimodal Adaptation: Self-RAG's reflection mechanism extends naturally to MM-RAG. The 
model can generate [Retrieve-Image=Yes] tokens when visual evidence would clarify queries, 
then assess whether retrieved images are [Relevant] to the question. Support tokens verify 
whether generated descriptions are [Fully Supported] by visual content, preventing attribute 
and relation hallucinations. Recent study demonstrates that multimodal reflection tokens reduce 
CHAIR object hallucination scores by 18-22% on captioning benchmarks (W. Zhai, 2024). 

5.3 Visual Grounding: Linking Claims to Image Regions 
Visual grounding techniques reduce hallucinations by explicitly connecting textual claims to 
specific image regions. Unlike CoVe and Self-RAG, which operate primarily through linguistic 
reasoning, visual grounding enforces pixel-level accountability. The model must identify 
bounding boxes, patches, or attention maps that support each generated claim. This constraint 
prevents the model from fabricating visual details based solely on statistical priors. 

Visual Description Grounding (VDGD): Ghosh et al. (2024) introduce VDGD, a training-free 
method that grounds response generation in visual descriptions. The approach first generates 
detailed descriptions of image content using a vision encoder. During text generation, the 
language model's attention is biased toward tokens consistent with these visual descriptions. 
This mechanism amplifies the influence of visual evidence over parametric linguistic priors. 
VDGD improves accuracy by 2-33% across eight benchmarks requiring deliberate reasoning, 
including MMMU (math understanding), MathVista (visual math), and AMBER (attribute 
reasoning). Critically, VDGD operates at inference time without model retraining, making it 
applicable to any pre-trained vision-language model. 

Multi-Modal Mutual-Information Decoding (M3ID):  Favero et al. (2024) demonstrate that as 
text generation progresses, models increasingly rely on language priors rather than visual input. 
This decaying visual reliance correlates strongly with hallucination emergence. M3ID 
counteracts this drift by amplifying tokens with higher mutual information with the visual 
prompt. The method computes token probabilities conditioned on the image, compares them to 
text-only probabilities, and upweights visually grounded tokens during sampling. For LLaVA 
13B, M3ID reduces hallucinated objects in captioning by 25% and improves POPE accuracy 
by 21%. When paired with Direct Preference Optimization (DPO), improvements reach 28% 
and 24% respectively. M3ID requires no training and adds minimal computational overhead, 
operating through modified sampling at inference time. 
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Limitations and Open Challenges: Visual grounding reduces object and attribute hallucinations 
but shows limited effectiveness against relation errors. Identifying whether "a person is holding 
a cup" versus "a cup is on the table" requires compositional reasoning across multiple regions, 
which current grounding methods struggle to capture. Additionally, grounding techniques 
assume high-quality vision encoders. When input images are blurred, occluded, or adversarially 
perturbed, visual evidence itself becomes unreliable, degrading grounding effectiveness. Future 
study must address these limitations through structured scene graph representations that 
explicitly model inter-object relationships. 

5.4 Adaptive Retrieval and Confidence Calibration 
Adaptive retrieval mechanisms optimize when and what to retrieve, moving beyond naive 
always-retrieve strategies. Two complementary dimensions govern effectiveness: retrieval 
triggering (deciding if retrieval helps) and confidence calibration (assessing output reliability). 

 Self-Adaptive Multimodal RAG (SAM-RAG):  W. Zhai (2024) introduces SAM-RAG, which 
dynamically filters documents and verifies both evidence and generation quality in multimodal 
contexts. The system implements three-stage adaptation. First, relevance screening evaluates 
whether retrieved documents contain information useful for answering the query. The model 
scores each document's alignment with the question, retaining only high-relevance contexts. 
Second, evidence verification assesses whether the retained documents support factual claims 
in the generated response. This step prevents hallucinations from emerging even when relevant 
documents are retrieved. Third, output validation performs final checks on generation quality, 
including factual consistency and answer completeness. Experiments show SAM-RAG 
improves retrieval accuracy and response quality over fixed-retrieval baselines, particularly on 
queries requiring multi-hop reasoning across text and images. 

Adaptive-RAG: Query Complexity Routing: Jeong et al.  (2024) propose training a classifier 
that predicts query complexity and routes requests to different retrieval strategies. Simple 
factual queries trigger single-step retrieval. Complex multi-hop questions activate iterative 
retrieval loops. Queries answerable from parametric knowledge bypass retrieval entirely. This 
adaptive routing reduces computational cost while maintaining accuracy. On open-domain QA 
datasets, Adaptive-RAG improves efficiency by 30% and accuracy by 5-8% over always-
retrieve baselines. 

Confidence Calibration: The Misalignment Problem: Confidence scores from retrieval and 
generation stages often diverge, creating calibration failures  (B. Chen et al., 2025). High 
retriever confidence with low generator confidence signals modality mismatch or insufficient 
context. The retriever successfully found relevant passages, but visual or spatial information 
required for generation is missing. Conversely, low retriever confidence with high generator 
confidence indicates over-reliance on parametric knowledge. The model generates confidently 
despite weak evidence, increasing hallucination risk. 

Calibration strategies address these divergences through two mechanisms. Separate calibration 
per component:  

• Retriever confidence is calibrated using ranking metrics (e.g., nDCG@10 thresholds). 
Generator confidence is calibrated using token-level logits or ensemble disagreement. 
When both signals indicate high confidence, outputs are reliable. When signals conflict, 
the system triggers verification or abstains from answering. 

• Cross-modal calibration: Multimodal systems require joint calibration across text and 
vision pathways. Recent study introduces correlation-based decoding that dynamically 
adjusts output logits based on visual-textual alignment scores (B. Chen et al., 2025). 
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Limitations and Open Challenges: Visual grounding reduces object and attribute hallucinations 
but shows limited effectiveness against relation errors. Identifying whether "a person is holding 
a cup" versus "a cup is on the table" requires compositional reasoning across multiple regions, 
which current grounding methods struggle to capture. Additionally, grounding techniques 
assume high-quality vision encoders. When input images are blurred, occluded, or adversarially 
perturbed, visual evidence itself becomes unreliable, degrading grounding effectiveness. Future 
study must address these limitations through structured scene graph representations that 
explicitly model inter-object relationships. 

5.4 Adaptive Retrieval and Confidence Calibration 
Adaptive retrieval mechanisms optimize when and what to retrieve, moving beyond naive 
always-retrieve strategies. Two complementary dimensions govern effectiveness: retrieval 
triggering (deciding if retrieval helps) and confidence calibration (assessing output reliability). 

 Self-Adaptive Multimodal RAG (SAM-RAG):  W. Zhai (2024) introduces SAM-RAG, which 
dynamically filters documents and verifies both evidence and generation quality in multimodal 
contexts. The system implements three-stage adaptation. First, relevance screening evaluates 
whether retrieved documents contain information useful for answering the query. The model 
scores each document's alignment with the question, retaining only high-relevance contexts. 
Second, evidence verification assesses whether the retained documents support factual claims 
in the generated response. This step prevents hallucinations from emerging even when relevant 
documents are retrieved. Third, output validation performs final checks on generation quality, 
including factual consistency and answer completeness. Experiments show SAM-RAG 
improves retrieval accuracy and response quality over fixed-retrieval baselines, particularly on 
queries requiring multi-hop reasoning across text and images. 

Adaptive-RAG: Query Complexity Routing: Jeong et al.  (2024) propose training a classifier 
that predicts query complexity and routes requests to different retrieval strategies. Simple 
factual queries trigger single-step retrieval. Complex multi-hop questions activate iterative 
retrieval loops. Queries answerable from parametric knowledge bypass retrieval entirely. This 
adaptive routing reduces computational cost while maintaining accuracy. On open-domain QA 
datasets, Adaptive-RAG improves efficiency by 30% and accuracy by 5-8% over always-
retrieve baselines. 

Confidence Calibration: The Misalignment Problem: Confidence scores from retrieval and 
generation stages often diverge, creating calibration failures  (B. Chen et al., 2025). High 
retriever confidence with low generator confidence signals modality mismatch or insufficient 
context. The retriever successfully found relevant passages, but visual or spatial information 
required for generation is missing. Conversely, low retriever confidence with high generator 
confidence indicates over-reliance on parametric knowledge. The model generates confidently 
despite weak evidence, increasing hallucination risk. 

Calibration strategies address these divergences through two mechanisms. Separate calibration 
per component:  

• Retriever confidence is calibrated using ranking metrics (e.g., nDCG@10 thresholds). 
Generator confidence is calibrated using token-level logits or ensemble disagreement. 
When both signals indicate high confidence, outputs are reliable. When signals conflict, 
the system triggers verification or abstains from answering. 

• Cross-modal calibration: Multimodal systems require joint calibration across text and 
vision pathways. Recent study introduces correlation-based decoding that dynamically 
adjusts output logits based on visual-textual alignment scores (B. Chen et al., 2025). 

When visual evidence strongly supports a claim, generator confidence is upweighted. 
When visual-text correlation is low, confidence is down weighted, preventing 
hallucinations from weak cross-modal grounding. 

5.5 Comparative Analysis: When to Apply Each Strategy 
Table 3 synthesizes the effectiveness, latency cost, and application scenarios for each mitigation 
strategy. No single method dominates across all contexts. Optimal deployment depends on 
hallucination type, task requirements, and computational constraints. 

 

Table 3. Comparative Analysis of Hallucination Mitigation Strategies 

Strategy Object 
Hallucination  

Attribute 
Hallucination  

Relation 
Hallucination  

Latency 
Cost Best Use Cases 

CoVe High (40–
60%) 

Medium (30–
45%) 

Medium (25–
35%) 

High (3–
4× 
inference) 

Long-form generation and 
complex reasoning tasks 
where correctness is more 
important than speed 

Self-RAG High (45–
65%) 

Low (15–
25%) 

Low (10–
20%) 

Medium 
(1.5–2× 
inference) 

Knowledge-intensive QA 
and fact verification where 
selective retrieval reduces 
noise 

Visual 
Grounding 
(VDGD / 
M3ID) 

Medium (35–
50%) 

High (50–
70%) 

Low (10–
15%) 

Low (1.1–
1.3× 
inference) 

Image captioning and 
visual QA tasks where 
attribute accuracy is critical 

Adaptive 
Retrieval 
(SAM-
RAG) 

Medium (30–
45%) 

Medium (30–
45%) 

Medium (20–
30%) 

Low (1.2–
1.5× 
inference) 

High-throughput 
applications requiring 
efficiency without 
sacrificing accuracy 

Confidence 
Calibration 

Low (20–
30%) 

Low (20–
30%) 

Low (15–
25%) 

Negligible 
(<1.05×) 

Production systems 
requiring uncertainty 
estimation and selective 
abstention 

 

Key Insights from Comparative Analysis: 

1. Complementary Failure Modes: CoVe excels at detecting object hallucinations through 
independent verification questions but provides limited benefit for attribute and relation errors, 
which require visual rather than linguistic reasoning. Visual grounding methods conversely 
reduce attribute hallucinations dramatically but struggle with objects and relations. Combining 
CoVe with visual grounding yields synergistic improvements, reducing multiple error types 
simultaneously. 

2. Latency-Accuracy Trade-offs: CoVe imposes the highest latency cost due to multi-stage 
generation (draft → verification questions → answers → revision). Production systems 
requiring real-time responses cannot afford 3-4x inference overhead. Visual grounding 
techniques like M3ID add minimal latency (<30% increase) while achieving substantial 
hallucination reductions, making them suitable for latency-sensitive applications like 
interactive visual QA or content moderation. 
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3. Task-Dependent Effectiveness: Self-RAG's adaptive retrieval works best for knowledge-
intensive tasks where external evidence is critical. On tasks solvable from parametric 
knowledge (e.g., "What is the capital of France "), Self-RAG correctly abstains from retrieval, 
reducing computational waste. Conversely, visual grounding provides no benefit for text-only 
queries. Systems must select strategies based on input modality and query type. 

4. Confidence Calibration as Meta-Strategy: Confidence calibration does not directly reduce 
hallucinations but enables systems to recognize when other mitigation strategies should 
activate. A low-confidence retrieval score triggers CoVe verification loops. A high visual-
textual correlation mismatch activates visual grounding. Confidence signals thus orchestrate 
strategy selection, creating adaptive pipelines that apply mitigation only when necessary. 

5. Composability and Synergies: Strategies can be composed for multiplicative gains. Self-
RAG + Visual Grounding reduces object hallucinations by 60-75%, exceeding either method 
alone. CoVe + Confidence Calibration enables selective verification, applying expensive multi-
stage reasoning only to low-confidence outputs. These compositions highlight the importance 
of modular design, where mitigation components operate independently and combine flexibly 
based on task requirements. 

Practical Deployment Recommendations: High-stakes domains (medical diagnosis, legal 
analysis) should prioritize accuracy over latency, deploying CoVe + Visual Grounding + 
Confidence Calibration. Consumer applications (chatbots, content generation) should optimize 
for throughput, using Visual Grounding + Adaptive Retrieval. Research systems exploring new 
architectures should implement all strategies modularly, enabling controlled ablation studies 
that identify optimal combinations for specific tasks. 

 

6. Evaluation Benchmarks and Methodologies 

Evaluating MM-RAG systems requires measuring performance across multiple dimensions: 
retrieval precision, generation quality, hallucination rates, and source attribution accuracy. 
Unlike text-only generation, where BLEU or ROUGE scores provide rough quality estimates, 
multimodal systems demand evaluation protocols that verify visual grounding, assess cross-
modal consistency, and detect fine-grained error types. This section surveys automated 
evaluation frameworks, object-level benchmarks, comprehensive multi-dimensional 
assessments, and community-driven standardization efforts. 

6.1 Automated Evaluation Frameworks: ARES and LLM-as-a-Judge 
Traditional RAG evaluation relies on human annotations for queries, retrieved passages, and 
generated responses. This approach is accurate but fundamentally unscalable. Annotating 
thousands of system outputs requires months of human effort, creating bottlenecks that prevent 
rapid iteration during model development. Automated evaluation frameworks address this 
constraint by training language models to assess RAG component quality without extensive 
human labeling. 

Automated RAG Evaluation System (ARES) introduces a three-stage evaluation pipeline that 
reduces human annotation requirements by two orders of magnitude (Saad-Falcon et al., 2024). 
The framework evaluates RAG systems along three dimensions: context relevance (does the 
retrieved passage contain information pertinent to the query ), answer faithfulness (is the 
generated response grounded in retrieved evidence ), and answer relevance (does the response 
address the user's question ).  
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reducing computational waste. Conversely, visual grounding provides no benefit for text-only 
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hallucinations but enables systems to recognize when other mitigation strategies should 
activate. A low-confidence retrieval score triggers CoVe verification loops. A high visual-
textual correlation mismatch activates visual grounding. Confidence signals thus orchestrate 
strategy selection, creating adaptive pipelines that apply mitigation only when necessary. 

5. Composability and Synergies: Strategies can be composed for multiplicative gains. Self-
RAG + Visual Grounding reduces object hallucinations by 60-75%, exceeding either method 
alone. CoVe + Confidence Calibration enables selective verification, applying expensive multi-
stage reasoning only to low-confidence outputs. These compositions highlight the importance 
of modular design, where mitigation components operate independently and combine flexibly 
based on task requirements. 

Practical Deployment Recommendations: High-stakes domains (medical diagnosis, legal 
analysis) should prioritize accuracy over latency, deploying CoVe + Visual Grounding + 
Confidence Calibration. Consumer applications (chatbots, content generation) should optimize 
for throughput, using Visual Grounding + Adaptive Retrieval. Research systems exploring new 
architectures should implement all strategies modularly, enabling controlled ablation studies 
that identify optimal combinations for specific tasks. 

 

6. Evaluation Benchmarks and Methodologies 

Evaluating MM-RAG systems requires measuring performance across multiple dimensions: 
retrieval precision, generation quality, hallucination rates, and source attribution accuracy. 
Unlike text-only generation, where BLEU or ROUGE scores provide rough quality estimates, 
multimodal systems demand evaluation protocols that verify visual grounding, assess cross-
modal consistency, and detect fine-grained error types. This section surveys automated 
evaluation frameworks, object-level benchmarks, comprehensive multi-dimensional 
assessments, and community-driven standardization efforts. 

6.1 Automated Evaluation Frameworks: ARES and LLM-as-a-Judge 
Traditional RAG evaluation relies on human annotations for queries, retrieved passages, and 
generated responses. This approach is accurate but fundamentally unscalable. Annotating 
thousands of system outputs requires months of human effort, creating bottlenecks that prevent 
rapid iteration during model development. Automated evaluation frameworks address this 
constraint by training language models to assess RAG component quality without extensive 
human labeling. 

Automated RAG Evaluation System (ARES) introduces a three-stage evaluation pipeline that 
reduces human annotation requirements by two orders of magnitude (Saad-Falcon et al., 2024). 
The framework evaluates RAG systems along three dimensions: context relevance (does the 
retrieved passage contain information pertinent to the query ), answer faithfulness (is the 
generated response grounded in retrieved evidence ), and answer relevance (does the response 
address the user's question ).  

The ARES workflow operates as follows.  

1-Synthetic Data Generation: Given an in-domain passage set, ARES generates synthetic 
query-passage-answer triples using large language models. These triples form positive 
examples where context is relevant, answers are faithful, and responses are on-topic. Negative 
examples are created through contrastive sampling—pairing queries with irrelevant passages 
or generating unfaithful answers that introduce facts absent from context.  

2-Judge Training: Using synthetic triples, ARES fine-tunes lightweight language models (e.g., 
FLAN-T5 XXL) as classifiers for each evaluation dimension. The judges learn to score context 
relevance, faithfulness, and relevance through supervised training on automatically generated 
labels.  

3-Prediction-Powered Inference (PPI): To mitigate errors from synthetic training, ARES 
calibrates judge predictions using a small human-labeled validation set (150-300 examples). 
PPI provides statistical confidence intervals around system rankings, enabling principled 
comparison despite judge imperfections. 

Experiments across eight knowledge-intensive tasks in KILT, SuperGLUE, and AIS 
demonstrate ARES's effectiveness. ARES achieves Kendall's tau correlation of 0.82 with 
human judgments on context relevance and 0.76 on answer relevance, significantly 
outperforming few-shot GPT-3.5 baselines (tau 0.75 and 0.63 respectively) and a reference-
free evaluation framework for RAG systems  (RAGAS ) (tau 0.78 and 0.71). Critically, ARES 
maintains accuracy across domain shifts—transferring from one document collection to another 
without retraining. This robustness makes ARES suitable for evaluating diverse MM-RAG 
systems where target domains may differ from development environments (Saad-Falcon et al., 
2024). 

LLM-as-a-Judge: Scalability and Calibration Challenges:  Beyond ARES, the broader LLM-
as-a-Judge paradigm uses powerful models like GPT-4 to evaluate weaker models' outputs 
according to specific criteria (L. Zheng et al., 2023). This approach enables scalable evaluation 
but introduces systematic biases. LLMs exhibit position bias (preferring responses presented 
first), length bias (favoring longer outputs regardless of quality), and self-enhancement bias 
(rating their own outputs higher than alternatives). Recent work on judge calibration 
demonstrates that combining multiple judge models through ensemble voting reduces bias 
while maintaining correlation with human preferences (D. Li et al., 2025). For MM-RAG 
evaluation, calibrated LLM judges provide practical alternatives to human annotation when 
combined with ground-truth validation sets that anchor judgments to human standards. 

6.2 Object-Level Hallucination Metrics: POPE and H-POPE 
While automated frameworks assess overall system quality, detecting specific hallucination 
types requires targeted benchmarks. POPE (Polling-based Object Probing Evaluation) 
establishes a controlled framework for measuring object-level hallucinations through binary 
yes/no questions  (Y. Li et al., 2023). 

POPE Methodology: The evaluation proceeds in three steps. First, ground-truth objects are 
extracted from images either through human annotations (e.g., MSCOCO) or automatic 
segmentation tools like SEEM. Second, negative sampling generates questions about 
nonexistent objects under three difficulty settings.  

Random sampling selects objects uniformly from the dataset vocabulary, testing whether 
models default to "yes" responses. **Popular sampling** selects frequently occurring objects 
(e.g., "chair," "table"), testing whether models hallucinate common objects based on statistical 
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priors. Adversarial sampling selects objects semantically related to image content but not 
actually present (e.g., asking "Is there a saddle " when showing a horse without equipment), 
testing whether models infer objects from contextual cues. Third, models are queried with both 
positive questions (about present objects) and negative questions (about absent objects), 
yielding accuracy, precision, recall, and F1 scores. 

POPE's binary format enables precise measurement and high reproducibility. Evaluation 
requires no complex parsing or subjective judgment. Models simply output 'yes' or 'no,' making 
inter-system comparison straightforward. Experiments reveal stark differences across models. 
Early vision-language models like LLaVA (v1) achieve only 50.13% accuracy on adversarial 
POPE, indicating frequent object hallucinations. InstructBLIP improves to 65.46% accuracy 
(F1: 73.75%) through instruction tuning on visual grounding data. Recent models incorporating 
contrastive decoding or visual attention mechanisms exceed 85% accuracy, demonstrating that 
architecture improvements directly reduce object-level errors (Y. Li et al., 2023). 

Hierarchical-POPE (H-POPE): Standard POPE tests only object presence at a single abstraction 
level. H-POPE extends this methodology by introducing hierarchical probing across abstraction 
levels: superordinate categories (e.g., "vehicle"), basic-level categories (e.g., "car"), and 
subordinate categories (e.g., "sedan") (Pham   Schott, 2024). This granularity reveals where 
hallucinations occur in the recognition hierarchy. Models may correctly identify coarse 
categories ("Is there a vehicle ") yet hallucinate fine-grained distinctions ("Is it a sedan " when 
it is actually an SUV). H-POPE results show that hallucination rates increase monotonically 
with specificity. Average accuracy drops from 88% at the superordinate level to 79% at basic 
level to 68% at subordinate level, highlighting that attribute hallucinations (Section 4.2) 
disproportionately affect fine-grained recognition. 

Limitations: POPE and H-POPE measure only object category hallucinations. They cannot 
capture attribute errors (color, shape, count) or relation errors (spatial arrangements, 
interactions). Questions like "Is the car red " or "Is the person next to the car " require different 
evaluation protocols. Additionally, POPE focuses on object detection—verifying 
presence/absence—rather than open-ended generation. Models may pass POPE yet hallucinate 
extensively when generating free-form captions or answering complex visual questions (Bai et 
al., 2024). 

6.3 Comprehensive Multi-Dimensional Benchmarks: MMHal-Bench and Beyond 
To evaluate hallucinations beyond object detection, comprehensive benchmarks assess multiple 
error types through open-ended generation tasks. 

MMHal-Bench: MMHal-Bench comprises 96 carefully curated image-question pairs across 12 
object categories (Sun et al., 2024). Unlike POPE's binary questions, MMHal-Bench asks open-
ended queries requiring detailed visual reasoning: "Describe the spatial arrangement of objects 
in this scene," "What activity is the person performing ", "Count the number of red items." 
Responses are evaluated using GPT-4 as a judge, which rates answers on a zero-to-six scale 
based on factual accuracy and visual grounding. The hallucination rate is computed as the 
proportion of responses scoring below three. 

MMHal-Bench prioritizes diversity over dataset size. The 96 examples are specifically designed 
to probe known failure modes: attribute errors (color, material), relation errors (spatial 
positions, interactions), counting errors (numerosity), and reasoning errors (inferring activities 
or intentions). The results reveal significant hallucination rates in vision-language models on 
MMHal-Bench. Hallucination rates vary in open-source models such as LLaVA  (Sun et al., 
2024). Critically, MMHal-Bench correlates strongly (r=0.78) with human evaluations of 
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MMHal-Bench: MMHal-Bench comprises 96 carefully curated image-question pairs across 12 
object categories (Sun et al., 2024). Unlike POPE's binary questions, MMHal-Bench asks open-
ended queries requiring detailed visual reasoning: "Describe the spatial arrangement of objects 
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MMHal-Bench prioritizes diversity over dataset size. The 96 examples are specifically designed 
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positions, interactions), counting errors (numerosity), and reasoning errors (inferring activities 
or intentions). The results reveal significant hallucination rates in vision-language models on 
MMHal-Bench. Hallucination rates vary in open-source models such as LLaVA  (Sun et al., 
2024). Critically, MMHal-Bench correlates strongly (r=0.78) with human evaluations of 

hallucination severity, validating GPT-4's effectiveness as a judge for this benchmark (Sun et 
al., 2024). 

Caption Hallucination in Image Captioning (CHAIR) measures object hallucinations in 
generated captions by comparing mentioned objects against ground-truth annotations 
(Rohrbach et al., 2018). Two metrics quantify errors. CHAIR_I (instance-level) measures the 
proportion of hallucinated objects per caption: CHAIR_I = (hallucinated objects) / (mentioned 
objects). CHAIR_S (sentence-level) measures the proportion of captions containing at least one 
hallucination. CHAIR remains widely used for image captioning evaluation but shows high 
variance across prompt templates and struggles with semantically equivalent phrasings (e.g., 
"automobile" vs. "car"). 

GAVIE and HALLUCINOGEN: Recent benchmarks extend beyond object and attribute errors. 
GAVIE (Grounded Annotation for Video-based Image Evaluation) evaluates temporal 
hallucinations in video understanding, testing whether models fabricate events or actions not 
present in video sequences. HALLUCINOGEN introduces a systematic taxonomy covering six 
hallucination types: object presence, attribute correctness, spatial relations, numerical accuracy, 
inferential reasoning, and contextual coherence. By evaluating models across all six 
dimensions, HALLUCINOGEN reveals that mitigation strategies effective for one error type 
often fail on others, reinforcing the need for mechanism-specific interventions discussed in 
Section 5.5. 

6.4 Community Standards and Shared Tasks: TREC RAG Track 
Benchmark fragmentation hinders reproducible comparison across studies. Different papers use 
different datasets, evaluation metrics, and experimental setups, making it difficult to assess true 
progress. Community-driven shared tasks address this problem by establishing standardized 
evaluation protocols, curated test collections, and official leaderboards. 

TREC RAG Track: The TREC 2024 and 2025 RAG Track provides the first large-scale, 
community-wide benchmark for end-to-end RAG system evaluation (Pradeep et al., 2025). The 
track defines three complementary tasks over the MS MARCO V2.1 corpus (tens of millions 
of web documents, hundreds of millions of text segments): 

Retrieval (R) Task: Participants rank and retrieve the most relevant text segments for given 
queries. Evaluation uses standard retrieval metrics (nDCG@10, MAP, recall@1000) to 
measure segment-level relevance without generation. 

Augmented Generation (AG) Task: Participants generate answers using a fixed set of top-k 
segments provided by a baseline retrieval system. This isolates generation quality from retrieval 
effectiveness, enabling focused evaluation of hallucination mitigation, source attribution, and 
answer completeness. 

RAG Task: Participants implement end-to-end systems with custom retrieval and generation 
strategies. Outputs must map to MS MARCO segments for reproducibility. Evaluation 
measures both retrieval precision and generation quality jointly. 

The track introduces nugget-based evaluation, originally developed for TREC Question 
Answering (Voorhees   Buckland, 2003) and adapted for RAG through the AutoNuggetizer 
(Pradeep et al., 2024). Nuggets represent atomic information units that constitute complete 
answers. Human assessors or LLMs identify nuggets in reference answers, then check whether 
system outputs cover these nuggets. Metrics include **nugget recall** (proportion of reference 
nuggets mentioned in system response) and **nugget precision** (proportion of system claims 
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supported by retrieved evidence). This granular evaluation detects not only hallucinations 
(unsupported claims) but also omissions (missing relevant facts). 

 

Support Evaluation and LLM-Judge Calibration: TREC 2024 RAG Track conducted extensive 
support evaluation comparing GPT-4o judgments against human annotations across 45 
participant submissions (Thakur et al., 2025). Support measures whether generated claims are 
grounded in cited passages. Results show strong correlation between automated LLM 
judgments and manual assessments, with run-level Kendall's τ of 0.783, though correlation 
decreases to 0.324 at topic-run level (Pradeep et al., 2024). While promising, this 44-56% 
disagreement rate highlights persistent challenges in LLM judge reliability. Error analysis 
reveals that LLMs struggle with nuanced inferential support (where claims require multi-hop 
reasoning across passages) and domain-specific terminology (where technical terms may be 
paraphrased differently). These findings motivate continued research on judge calibration and 
hybrid human-LLM evaluation workflows. 

Ragnarök Framework: To support TREC RAG Track participation, the Ragnarök framework 
provides an open-source implementation of end-to-end RAG pipelines (Pradeep et al., 2025). 
Ragnarök standardizes input/output formats, integrates retrieval systems (BM25, dense 
retrievers, late-interaction models), and interfaces with generation backends (GPT-4o, 
Command R+, LLaMA 3.1). The framework includes a web-based arena for crowdsourced 
pairwise system comparison, enabling community evaluation beyond official track 
submissions. Ragnarök's release accelerates reproducibility by providing reference 
implementations and documented baselines that future study can build upon. 

6.5 Dynamic Benchmarking and Data Contamination Mitigation 
A critical challenge in RAG evaluation is data contamination: test queries or answers may exist 
within LLM training corpora, inflating performance without genuine retrieval (Sainz et al., 
2023). If a model memorizes "What is the capital of France " during pretraining, it can answer 
correctly without accessing retrieved evidence. This false positive undermines RAG evaluation, 
making systems appear effective when they simply regurgitate memorized facts. 

Time-Stamped Datasets: Dynamic benchmarks mitigate contamination by incorporating 
information published after model training cutoffs. RGB (RAG Benchmark) includes questions 
about events occurring months after GPT-4's knowledge cutoff, forcing models to rely on 
retrieval  (X. Zheng et al., 2025). Similarly, the TREC RAG Track refreshes query topics 
annually, ensuring that each year's evaluation includes novel questions unlikely to appear in 
training data. Results from RGB show that retrieval quality becomes the dominant factor for 
time-sensitive queries—models with strong parametric knowledge but weak retrieval perform 
worse than models with moderate parametric knowledge but strong retrieval. 

Adversarial Filtering: J. Chen et al (2024) propose active contamination testing: deliberately 
include queries from popular QA datasets (Natural Questions, TriviaQA) in test sets, then flag 
systems that answer without retrieval. Models achieving suspiciously high accuracy on known-
contaminated queries are penalized or excluded from leaderboards. This strategy deters data 
contamination by making it detectable and costly. 

RAGAS: The RAGAS framework enables evaluation without ground-truth answers by 
assessing three aspects automatically (Es et al., 2024). Faithfulness measures whether generated 
claims are entailed by retrieved context, using natural language inference models to verify 
grounding. Context precision measures whether retrieved passages are relevant to the query, 
using similarity-based ranking. Answer relevance measures whether generated responses 
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A critical challenge in RAG evaluation is data contamination: test queries or answers may exist 
within LLM training corpora, inflating performance without genuine retrieval (Sainz et al., 
2023). If a model memorizes "What is the capital of France " during pretraining, it can answer 
correctly without accessing retrieved evidence. This false positive undermines RAG evaluation, 
making systems appear effective when they simply regurgitate memorized facts. 

Time-Stamped Datasets: Dynamic benchmarks mitigate contamination by incorporating 
information published after model training cutoffs. RGB (RAG Benchmark) includes questions 
about events occurring months after GPT-4's knowledge cutoff, forcing models to rely on 
retrieval  (X. Zheng et al., 2025). Similarly, the TREC RAG Track refreshes query topics 
annually, ensuring that each year's evaluation includes novel questions unlikely to appear in 
training data. Results from RGB show that retrieval quality becomes the dominant factor for 
time-sensitive queries—models with strong parametric knowledge but weak retrieval perform 
worse than models with moderate parametric knowledge but strong retrieval. 

Adversarial Filtering: J. Chen et al (2024) propose active contamination testing: deliberately 
include queries from popular QA datasets (Natural Questions, TriviaQA) in test sets, then flag 
systems that answer without retrieval. Models achieving suspiciously high accuracy on known-
contaminated queries are penalized or excluded from leaderboards. This strategy deters data 
contamination by making it detectable and costly. 

RAGAS: The RAGAS framework enables evaluation without ground-truth answers by 
assessing three aspects automatically (Es et al., 2024). Faithfulness measures whether generated 
claims are entailed by retrieved context, using natural language inference models to verify 
grounding. Context precision measures whether retrieved passages are relevant to the query, 
using similarity-based ranking. Answer relevance measures whether generated responses 

address the user's question, using semantic similarity between query and answer. RAGAS 
correlates strongly with human judgments (Spearman ρ=0.71 for faithfulness, ρ=0.68 for 
relevance) while requiring no manual annotation during evaluation. This reference-free 
property makes RAGAS suitable for iterative development cycles where human labeling would 
create bottlenecks. Advancing MM-RAG research requires not only architectural innovation 
but also access to shared benchmarks, evaluation frameworks, and reproducible open-source 
implementations. Table 4 compiles essential open-source benchmarks and frameworks 
ensuring reproducibility in future research. 

 

Table 4. Key open-source resources, benchmarks, and evaluation frameworks supporting 
reproducible research in MM-RAG 

Category Resource Repository / Link Description Community 
Adoption 

Vision 
Retrieval 

ColPali 
Engine 

github.com/illuin-
tech/colpali 

Late-interaction visual 
retrieval framework based 
on the PaliGemma 
backbone. Supports token-
level pooling and multi-
vector indexing. 

400+ GitHub 
stars; PyPI 
package 
available 

Vision 
Retrieval 

ColPali 
Cookbooks 

https://github.com/
tonywu71/colpali-
cookbooks 

Tutorial notebooks for 
interpretability analysis and 
similarity map visualization. 

Actively 
maintained 
examples 

Benchmark ViDoRe V1 

huggingface.co/col
lections/vidore/vid
ore-benchmark-
667173f98e70a1c0
fa4db00d 

Original document image 
retrieval benchmark with 
nine QA-style datasets. 

Baseline 
benchmark in 
ColPali 

Benchmark ViDoRe V2 

huggingface.co/col
lections/vidore/vid
ore-benchmark-
v2-
67ae03e3924e85b
36e7f53b0 

Extended benchmark 
introducing "blind" queries, 
multilingual support, and 
BEIR compatibility 

Designed to 
address V1 
saturation.Offer
s a more 
challenging 
evaluation 
standard. 

Benchmark ViDoRe V3 
huggingface.co/col
lections/vidore/vid
ore-benchmark-v3 

Large-scale enterprise 
benchmark with 26k pages, 
3k queries, six languages, 
and human-verified labels. 

Integrated into 
MTEB 
leaderboard 

Evaluation RAGAS github.com/explod
inggradients/ragas 

Reference-free RAG 
evaluation framework 
measuring faithfulness, 
context precision, and 
answer relevance. 

6.6k stars; 
EACL 2024 
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Evaluation ARES 
github.com/stanfor
d-
futuredata/ARES 

Automated RAG evaluation 
using synthetic data 
generation and statistical 
confidence estimation. 

NAACL 2024 

Survey MM-RAG 
Survey Repo 

github.com/llm-
lab-
org/Multimodal-
RAG-Survey 

Living survey repository 
categorizing MM-RAG 
literature with continuous 
updates. 

ACL 2025 
Findings 

Dataset DocVQA 
huggingface.co/dat
asets/vidore/docvq
a_test_subsampled 

Test subset from the 
DocVQA dataset (originally 
12k+ images) adapted for 
visual retrieval 
benchmarking 

Common 
baseline dataset 

Dataset InfographicsV
QA 

huggingface.co/dat
asets/vidore/infogr
aphicsvqa_test_su
bsampled 

Test subset from the 
InfographicsVQA dataset 
targeting complex visual–
text reasoning. 

High visual–
semantic 
difficulty 

Platform ViDoRe 
Leaderboard 

huggingface.co/sp
aces/vidore/vidore
-leaderboard 

Public leaderboard tracking 
state-of-the-art visual 
retrieval models across 
benchmarks. 

Real-time 
evaluation 

Evaluation 
/ 
Visualizati
on 

RAGAS docs.ragas.io 
Evaluation framework 
providing metrics and 
visualization integrations 

Open-source 
(Apache 2.0). 
Enterprise 
cloud options 
available 

 

As summarized in Table 5, recent progress in MM-RAG has been strongly enabled by the 
emergence of standardized benchmarks, open evaluation toolkits, and publicly accessible 
retrieval engines. Resources such as ViDoRe and RAGAS play a critical role in ensuring fair 
comparison and reproducibility across studies, while leaderboards facilitate continuous tracking 
of state-of-the-art performanc 

7. Applications in High-Stakes Domains 

The practical value of MM-RAG systems is measured not by laboratory benchmarks alone but 
by their reliability in high-stakes domains where errors carry severe consequences. This section 
examines three critical application areas—medical imaging, financial analysis, and legal 
document processing—where hallucinations can lead to misdiagnoses, financial losses, or legal 
liability. We analyze domain-specific challenges, architectural requirements, and empirical 
results from recent deployments. 

7.1 Why These Domains  Shared Requirements and Distinct Challenges 

Medical, financial, and legal domains share three characteristics that amplify hallucination risks 
while demanding exceptional accuracy. First, these domains require verifiable factual 
grounding. Medical diagnoses must align with established clinical guidelines and imaging 
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As summarized in Table 5, recent progress in MM-RAG has been strongly enabled by the 
emergence of standardized benchmarks, open evaluation toolkits, and publicly accessible 
retrieval engines. Resources such as ViDoRe and RAGAS play a critical role in ensuring fair 
comparison and reproducibility across studies, while leaderboards facilitate continuous tracking 
of state-of-the-art performanc 

7. Applications in High-Stakes Domains 

The practical value of MM-RAG systems is measured not by laboratory benchmarks alone but 
by their reliability in high-stakes domains where errors carry severe consequences. This section 
examines three critical application areas—medical imaging, financial analysis, and legal 
document processing—where hallucinations can lead to misdiagnoses, financial losses, or legal 
liability. We analyze domain-specific challenges, architectural requirements, and empirical 
results from recent deployments. 

7.1 Why These Domains  Shared Requirements and Distinct Challenges 

Medical, financial, and legal domains share three characteristics that amplify hallucination risks 
while demanding exceptional accuracy. First, these domains require verifiable factual 
grounding. Medical diagnoses must align with established clinical guidelines and imaging 

evidence. Financial analyses must reflect actual numerical data from reports and market 
indicators. Legal conclusions must cite specific statutes, case precedents, and contractual 
clauses. Parametric knowledge alone is insufficient—external evidence is mandatory. Second, 
these domains process inherently multimodal documents. Medical records pair radiology 
images with textual reports. Financial documents integrate balance sheets, trend charts, and 
management commentary. Legal contracts contain both standardized text clauses and attached 
exhibits including diagrams, floor plans, or financial schedules. Text-only RAG loses critical 
information. Third, these domains exhibit zero-error tolerance. A hallucinated drug dosage 
recommendation endangers patient safety (Kim et al., 2025). A fabricated earnings figure 
triggers regulatory violations and shareholder lawsuits. A misinterpreted contract clause 
exposes firms to litigation. Unlike consumer chatbots where occasional errors are annoying but 
tolerable, high-stakes applications require architectural designs that prioritize precision over 
fluency. 

Despite shared requirements, each domain presents distinct technical challenges. Medical 
imaging demands real-time processing of high-resolution scans (e.g., CT images at 
512×512×300 voxels) while maintaining diagnostic accuracy on rare pathologies with limited 
training data. Financial analysis requires numerical reasoning across complex tables and time-
series charts, where OCR errors in decimal points or negative signs propagate catastrophically. 
Legal document processing involves recursive clause retrieval through hierarchical document 
structures, where missing a referenced definition or footnote invalidates entire contractual 
interpretations. These domain-specific constraints motivate specialized MM-RAG architectures 
beyond general-purpose systems. 

7.2 Medical Imaging: Domain-Aware Retrieval and Visual Grounding 
Medical MM-RAG (MMed-RAG),  Xia et al. (2024) introduced MMed-RAG, a MM-RAG 
system specifically designed for medical vision-language models. MMed-RAG systems face a 
fundamental tension between generalization and specialization. General-purpose vision-
language models (e.g., GPT-4V, Gemini) perform well on natural images but struggle with 
medical modalities where subtle visual cues determine diagnoses. A 2-millimeter lung nodule, 
barely visible to untrained observers, may indicate early-stage cancer. General models trained 
on web-scraped data lack exposure to such domain-specific patterns (Y. Li et al., 2023). 

 

The framework addresses three critical failures in naive RAG applications to medicine.  

• Cross-modal misalignment: When replacing input images with noisy corrupted 
versions, naive RAG systems retrieve context based on the original image but generate 
responses conditioned on the corrupted input. This produces confident hallucinations—
responses that appear plausible but contradict visual evidence. MMed-RAG mitigates 
this through cross-modal consistency checks that verify retrieved evidence aligns with 
actual input modalities.  

• Retrieval interference: Incorrectly retrieved contexts sometimes degrade performance 
even for queries the model could answer from parametric knowledge. MMed-RAG 
employs adaptive context selection, filtering retrieved passages below relevance 
thresholds rather than blindly injecting all results into generation.  

• Domain shift: Medical imaging spans diverse modalities (radiology, pathology, 
ophthalmology) with distinct visual characteristics. A retriever trained on chest X-rays 
may fail on retinal scans. MMed-RAG implements domain-aware indexing that routes 
queries to modality-specific retrievers, improving recall across specialized subfields. 
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Experiments across five medical datasets (MIMIC-CXR, IU-Xray, Harvard-FairVLMed, PMC-
OA, PathVQA) demonstrate substantial gains. According to Xia et al. (2024), MMed-RAG 
achieves an average improvement of 43.8% in factual accuracy across tasks, specifically 
improving medical VQA accuracy by 18.5% and report generation metrics by 69.1% over 
baseline. On radiology report generation, improvements reach 69.1% in BLEU score and 58.4% 
in ROUGE-L, indicating both fluency and factual correctness gains. With preference tuning 
(RAG-PT), the over-reliance rate dropped from 43.31% to 8.38%, directly addressing patient 
safety concern (Xia et al., 2024). 

Visual RAG:  Standard Med-LVLMs process single images, limiting their ability to compare 
findings across time series (e.g., tracking tumor growth) or correlate multiple imaging 
modalities (e.g., X-ray + CT scan). Chu et al. (2025) introduce Visual RAG (V-RAG), enabling 
models to retrieve and reason over multiple related images simultaneously. The approach fine-
tunes models on image-text tasks that require multi-image comprehension. Entity probing 
evaluates whether specific medical entities (e.g., "pulmonary edema") are grounded in visual 
evidence. V-RAG significantly improves entity probing performance (measured in F1 score) 
on both frequent and rare entities compared to baselines, and downstream evaluation 
demonstrates a 19% relative improvement in the RadGraph-F1 score (Chu et al., 2025). This 
demonstrates that multi-image retrieval not only improves detection accuracy but also enhances 
generation factuality. 

Agentic AI and Multi-Agent Systems: Recent radiology applications explore multi-agent 
architectures where specialized sub-models handle distinct reasoning steps. One agent performs 
image segmentation to localize anatomical structures. Another agent retrieves relevant case 
histories from electronic health records. A third agent synthesizes evidence and generates 
diagnostic hypotheses. A supervisor agent adjudicates conflicting predictions. This division of 
labor improves diagnostic accuracy by 8-15% over monolithic models while enabling fine-
grained error attribution. However, multi-agent systems require careful orchestration to avoid 
compounding errors across stages. Evidence from 2024-2025 indicates these approaches remain 
computationally expensive and lack comprehensive clinical validation, limiting near-term 
deployment (Rabbani et al., 2025). 

7.3 Financial Analysis: Chart-to-Markdown and Hybrid Retrieval 
Financial documents present unique challenges for MM-RAG systems. Balance sheets contain 
hundreds of numerical entries where a single OCR error (e.g., "8.5%" → "85%") invalidates 
downstream analysis. Trend charts convey growth patterns that text descriptions cannot 
adequately capture. Management commentary provides contextual narrative essential for 
interpreting raw figures. Effective financial RAG must jointly process text, tables, and charts 
while preserving numerical precision. 

Chart-to-Markdown Conversion:  Jiang et al. (2025) proposed a MM-RAG framework that 
converts chart and table images into structured Markdown representations prior to indexing. 
While the authors do not publish explicit numerical examples, they demonstrate that financial 
tables (e.g., quarterly results) can be faithfully transformed into structured row–column formats, 
preserving numerical relations and table semantic. This structured representation enables 
precise retrieval. Queries like "What was Q2 revenue growth " retrieve the exact table cell 
rather than noisy text fragments. Experiments on proprietary financial datasets demonstrate 
improvements in retrieval precision (Precision@10 increases from 0.36 to 0.40) and generation 
accuracy compared to OCR-based baselines (C. Jiang et al., 2025). The full multimodal strategy 
effectively addresses the primary failure mode (OCR-induced numerical errors) in financial 
applications. 
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image segmentation to localize anatomical structures. Another agent retrieves relevant case 
histories from electronic health records. A third agent synthesizes evidence and generates 
diagnostic hypotheses. A supervisor agent adjudicates conflicting predictions. This division of 
labor improves diagnostic accuracy by 8-15% over monolithic models while enabling fine-
grained error attribution. However, multi-agent systems require careful orchestration to avoid 
compounding errors across stages. Evidence from 2024-2025 indicates these approaches remain 
computationally expensive and lack comprehensive clinical validation, limiting near-term 
deployment (Rabbani et al., 2025). 

7.3 Financial Analysis: Chart-to-Markdown and Hybrid Retrieval 
Financial documents present unique challenges for MM-RAG systems. Balance sheets contain 
hundreds of numerical entries where a single OCR error (e.g., "8.5%" → "85%") invalidates 
downstream analysis. Trend charts convey growth patterns that text descriptions cannot 
adequately capture. Management commentary provides contextual narrative essential for 
interpreting raw figures. Effective financial RAG must jointly process text, tables, and charts 
while preserving numerical precision. 

Chart-to-Markdown Conversion:  Jiang et al. (2025) proposed a MM-RAG framework that 
converts chart and table images into structured Markdown representations prior to indexing. 
While the authors do not publish explicit numerical examples, they demonstrate that financial 
tables (e.g., quarterly results) can be faithfully transformed into structured row–column formats, 
preserving numerical relations and table semantic. This structured representation enables 
precise retrieval. Queries like "What was Q2 revenue growth " retrieve the exact table cell 
rather than noisy text fragments. Experiments on proprietary financial datasets demonstrate 
improvements in retrieval precision (Precision@10 increases from 0.36 to 0.40) and generation 
accuracy compared to OCR-based baselines (C. Jiang et al., 2025). The full multimodal strategy 
effectively addresses the primary failure mode (OCR-induced numerical errors) in financial 
applications. 

Hybrid Retrieval (Vector + Graph Databases): Financial analysis often requires multi-hop 
reasoning. A query about "debt-to-equity ratio" requires retrieving balance sheet data (total 
debt, shareholder equity), computing the ratio, then comparing against industry benchmarks. 
Vector databases enable semantic search but lack structured reasoning. Jiang et al. (2025) 
augment vector retrieval with graph databases that encode relationships between financial 
concepts (e.g., "Revenue -> Operating Income -> Net Income"). Queries trigger both vector 
similarity search and graph traversal. Retrieved contexts include semantically relevant passages 
plus structurally related entities. This hybrid approach improves multi-hop question accuracy 
by 23% on financial QA benchmarks. 

FinRAGBench-V (Visual Citation Benchmark): Evaluating financial RAG systems requires not 
only answer accuracy but also source attribution. Users must verify which specific chart or table 
supports each claim. FinRAGBench-V introduces the first benchmark requiring visual 
citations—generated responses must cite exact page regions (bounding boxes) supporting 
claims (Zhao et al., 2025). Experiments reveal that multimodal retrievers outperform text-only 
approaches on visual document retrieval tasks, with evaluation showing performance variations 
across models on financial document benchmarks (Zhao et al., 2025). This benchmark 
establishes a new standard for trustworthy financial RAG deployment. 

Real-World Impact: Financial institutions have deployed RAG systems for extracting 
structured information from complex documents, demonstrating substantial improvements in 
analyst productivity and accuracy on domain-specific extraction tasks 

7.4 Legal Document Processing: Recursive Retrieval and Clause Dependencies 
Legal contracts exhibit hierarchical structures where clauses reference other clauses, 
definitions, exhibits, and footnotes. Understanding a single clause may require recursively 
retrieving and synthesizing information scattered across the document. Traditional flat retrieval 
paradigms fail because they treat documents as unstructured text collections, ignoring internal 
dependencies. 

Multi-Graph Recursive Retrieval: Yang (2024) proposes a multi-agent system for legal RAG 
that constructs multiple document graphs. A clause graph captures hierarchical structure (e.g., 
Section 5.2.3 is a child of Section 5.2). A definition graph links terms to their formal definitions. 
A reference graph tracks cross-references (e.g., "as defined in Section 3.1"). Given a query, 
agents traverse these graphs recursively. Retrieving Clause A may trigger retrieval of Definition 
B, which references Exhibit C. The system terminates when no further linked nodes are relevant 
or when recursive depth exceeds limits to prevent infinite loops. Experiments on commercial 
contracts (500+ pages) show that recursive retrieval improves comprehension accuracy by 31% 
compared to naive chunking strategies that sever clause dependencies. 

Addleshaw Goddard: A major UK law firm deployed an optimized RAG system for commercial 
contract analysis, achieving 95% accuracy compared to 74% for baseline LLMs (Addleshaw 
Goddard LLP, 2024). Three optimizations drove performance gains. Optimized retrieval: 
Category-aware chunking groups related clauses (e.g., all indemnification provisions) into 
coherent units, improving retrieval relevance by ~20%. Keyword prompting: Instructions 
directing LLMs to focus on domain-specific terms (e.g., "force majeure," "liquidated damages") 
improved recall accuracy by ~16%. Follow-up prompting: After initial generation, a second 
prompt asks the model to verify claims against retrieved evidence, reducing hallucinations by 
9.2%. The system processes 500-page merger agreements in 12 minutes compared to 4-6 hours 
for manual review, enabling lawyers to focus on strategic analysis rather than mechanical clause 
identification (Addleshaw Goddard LLP, 2024). 
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Multi-Round RAG for Comprehensive Analysis: Complex legal queries often require iterative 
refinement. A lawyer asks "What are the termination provisions " The system retrieves relevant 
clauses but realizes some reference broader definitions of "material breach" defined elsewhere. 
Multi-round RAG iteratively expands context by identifying undefined terms, retrieving their 
definitions, then re-generating responses with complete information. Experiments show multi-
round approaches improve completeness (covering all relevant provisions) by 27% while 
maintaining precision (avoiding irrelevant information) through dynamic stopping criteria that 
terminate retrieval when additional rounds yield diminishing returns(“Application of RAG 
Model Based on Retrieval Enhanced Generation Technique in Complex Query Processing,” 
2024). 

Hallucination Risks in Legal RAG: In a study(Magesh et al., 2025) three commercial legal RAG 
systems were evaluated: Lexis+ AI and Ask Practical Law AI hallucinated in approximately 
17% of queries (one in six responses), while Westlaw AI exhibited hallucinations in 33% of 
responses (one in three). These findings highlight the need for continuous evaluation and human 
oversight in legal AI applications. 

 

7.5 Resources and Reproducibility 
Community Platforms: Beyond individual tools, standardized platforms facilitate reproducible 
comparisons. The TREC RAG Track (Section 6.4) provides shared evaluation protocols. 
Hugging Face hosts 150+ domain-specific embedding models. GitHub repositories like RAG-
Anything (HKU, 2024) provide end-to-end pipelines integrating document parsing, multimodal 
retrieval, and generation. 

Reproducibility Checklist for Domain Applications: 

1. Dataset Transparency: Specify training data sources, annotation procedures, and licensing 
constraints 

2. Evaluation Protocols: Report metrics on standardized benchmarks (POPE, MMHal-
Bench, domain-specific tasks) 

3. Computational Requirements: Document GPU memory, inference latency, and indexing 
costs 

4. Error Analysis: Conduct domain-expert evaluations beyond automated metrics to identify 
failure modes 

5. Ethical Safeguards: Implement human-in-the-loop verification for high-stakes decisions 

Adhering to these practices accelerates community progress while ensuring safe deployment in 
critical domains. 
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8. Conclusion 

This survey systematically analyzed MM-RAG through the intersecting dimensions of 
architectural design, hallucination mechanisms, mitigation strategies, evaluation protocols, and 
high-stakes applications. Our synthesis reveals a field transitioning from exploratory research 
toward systematic engineering, where architectural choices, error patterns, and evaluation 
methodologies are increasingly well-understood. This concluding section distills key insights, 
clarifies trade-offs, and charts future research directions that will shape the next generation of 
MM-RAG systems.  

8.1 Key Insights: What We Have Learned  
Architectural Evolution Follows a Clear Trajectory. The progression from discrete OCR-based 
pipelines to unified vision-language embeddings, and increasingly toward late-interaction and 
agentic paradigms, reflects fundamental trade-offs between semantic fidelity, computational 
cost, and hallucination risk. OCR-based systems prioritize engineering simplicity and 
compatibility with legacy infrastructure but sacrifice spatial layout and structural semantics. 
Dense multimodal embeddings (CLIP, SigLIP) enable cross-modal alignment but compress 
information into fixed-size vectors, losing fine-grained details. Late-interaction models 
(ColPali, ColBERT) preserve granularity through multi-vector representations but increase 
storage and indexing costs. No single architecture dominates across all scenarios. Optimal 
design depends on document characteristics, query distribution, and operational constraints. 
This architectural diversity is not a weakness but a strength—it enables practitioners to select 
or compose approaches matched to specific application requirements. Hallucination Is Inherent, 
Not Eliminable, but Manageable. Probabilistic language models inherently produce outputs that 
occasionally diverge from evidence. In multimodal contexts, this risk amplifies through cross-
modal misalignment, cascading error propagation, and retrieval-specific information loss. 
However, hallucinations are not uniform. Object category errors stem from different 
mechanisms than attribute errors, which differ from relation errors. Fabrications (describing 
nonexistent content) arise from overreliance on linguistic priors, while omissions (failing to 
describe present content) result from low-confidence visual encodings. This mechanistic 
diversity demands tailored interventions. CoVe reduces object hallucinations through iterative 
verification but provides limited benefit for attributes. Visual grounding techniques reduce 
attribute errors but struggle with relations. Confidence calibration enables systems to recognize 
uncertainty and abstain from answering rather than hallucinate. Production systems must 
integrate multiple complementary strategies, creating layered defenses that address distinct 
failure modes. The goal shifts from eliminating hallucinations to detecting, quantifying, and 
controlling them within acceptable risk thresholds. Evaluation Has Matured but Remains 
Fragmented. The field has progressed from anecdotal demonstrations to systematic, 
reproducible assessment. POPE establishes binary object-level evaluation as a widely adopted 
baseline. MMHal-Bench extends coverage to attributes, relations, and reasoning. TREC RAG 
Track introduces community-wide standards with shared tasks and official leaderboards. ARES 
and RAGAS automate evaluation through synthetic data generation and reference-free metrics, 
enabling rapid iteration during development. However, fragmentation persists. Different 
benchmarks measure different hallucination types. Medical, financial, and legal evaluations 
remain incomparable due to domain-specific metrics and proprietary datasets. Dynamic 
benchmarks mitigate data contamination but lack standardization across studies. Bridging these 
evaluation silos requires unified protocols that assess retrieval precision, generation 
faithfulness, source attribution accuracy, and domain-specific requirements within a single 
framework. Standardization efforts like TREC RAG Track represent critical infrastructure 
investments that accelerate progress by enabling fair comparisons. High-Stakes Applications 
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Reveal Persistent Gaps. Medical imaging, financial analysis, and legal document processing 
demonstrate MM-RAG's practical potential while exposing limitations. Domain-aware 
retrievers (MMed-RAG, Visual RAG) improve performance over general-purpose models, 
confirming that specialized architectures outperform one-size-fits-all approaches. MMed-RAG 
improves factual accuracy by 18.5% over baseline Med-LVLMs on medical VQA tasks (Xia et 
al., 2024). Chart-to-Markdown conversion improves answer correctness scores (evaluated via 
RAGAS) by approximately 28% and retrieval precision by approximately 19% compared to 
OCR-based baselines in financial contexts, addressing the primary failure mode where OCR 
misreads decimal points or negative sign (C. Jiang et al., 2025). Multi-graph recursive retrieval 
improves legal clause comprehension by 31% by preserving hierarchical dependencies that flat 
retrieval ignores. However, hallucination risks require careful mitigation. Commercial legal 
RAG tools fabricate citations in 17-33% of responses (Magesh et al., 2025). In medical 
contexts, baseline systems without retrieval safeguards exhibit over-reliance rates of 43.31%, 
where models incorrectly trust noisy retrieved evidence. Domain-aware RAG architectures like 
MMed-RAG reduce this rate to 8.38% through adaptive context filtering and cross-modal 
consistency checks (Xia et al., 2024). demonstrating that specialized architectures substantially 
improve reliability. These failures underscore that achieving human-level reliability in high-
stakes domains requires not only better models but also architectural safeguards, human-in-the-
loop verification, and rigorous certification processes. 

8.2 Future Directions: Toward the Next Generation 
The convergence of architectural advances, foundation model scaling, and structured 
knowledge integration points toward several transformative research directions that will define 
the next generation of MM-RAG systems.  

Agentic RAG: Traditional RAG operates as a passive retrieve-then-generate pipeline. Agentic 
RAG transforms this into an autonomous problem-solving process where systems plan multi-
step workflows, dynamically select tools, and iteratively refine outputs based on feedback. 
Multi-agent architectures distribute complex tasks across specialized sub-agents—one agent 
performs retrieval, another verifies factuality, a third synthesizes evidence, and a supervisor 
coordinate outputs. Recent study demonstrates that agentic systems improve accuracy by 8-
15% on complex reasoning tasks requiring multi-hop inference, though computational costs 
increase proportionally. Critical research challenges include coordinating agent communication 
without error compounding, designing stopping criteria that prevent infinite verification loops, 
and developing evaluation benchmarks that measure agentic capabilities (planning quality, tool 
selection accuracy, adaptive refinement) beyond traditional QA metrics. The shift toward 
agentic paradigms represents not merely an incremental improvement but a fundamental 
reconceptualization of RAG from reactive information retrieval to proactive knowledge 
synthesis. 

Hybrid Reasoning: Emerging frameworks distinguish between System 1 reasoning (fast, 
intuitive, pattern-based) and System 2 reasoning (slow, deliberate, logic-based) in RAG 
contexts (Liang et al., 2025). Simple factual queries trigger lightweight retrieval with single-
pass generation (System 1). Complex multi-hop questions activate iterative retrieval, chain-of-
thought reasoning, and verification loops (System 2). Adaptive routers predict query 
complexity and allocate computational resources, accordingly, maximizing accuracy-efficiency 
trade-offs. Preliminary results show that hybrid systems achieve 90-95% of full System 2 
performance while reducing average latency by 40-60% through intelligent routing. Future 
research must develop query complexity classifiers that generalize across domains, design 
System 1-System 2 interfaces that enable graceful escalation when fast reasoning proves 
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insufficient and establish test-time compute budgets that optimize resource allocation 
dynamically based on task requirements and user preferences.  

Graph-Enhanced Multimodal RAG (GEAR): Knowledge graphs provide structured 
representations of entities and relationships, complementing neural retrieval's semantic 
flexibility with symbolic reasoning's logical consistency. GEAR systems index documents as 
graph nodes, with edges representing citations, temporal sequences, or semantic relations. 
Queries trigger both vector similarity search (retrieving semantically similar nodes) and graph 
traversal (following explicit relationships). This hybrid approach improves multi-hop reasoning 
by 23-31% compared to vector-only retrieval while reducing hallucinations through structured 
knowledge constraints. Challenges include constructing high-quality domain-specific 
knowledge graphs without prohibitive manual annotation, maintaining graph consistency as 
new documents arrive, and designing joint embedding spaces where neural and symbolic 
representations interact seamlessly. Graph-enhanced RAG represents a promising direction for 
domains requiring verifiable reasoning chains, such as legal precedent analysis, scientific 
literature review, and medical differential diagnosis.  

Privacy-Preserving and Federated MM-RAG: High-stakes domains demand data sovereignty. 
Medical records and financial documents cannot be routed through cloud-based retrieval 
services without violating privacy regulations (GDPR, HIPAA). Federated RAG architectures 
enable on-device or on-premises retrieval where data never leaves secure environments. 
Queries are processed locally against partitioned indices, with only aggregated results (not raw 
documents) transmitted to generation servers. Differential privacy techniques add calibrated 
noise to queries and retrieved contexts, providing mathematical privacy guarantees while 
degrading generation quality minimally (typically 5-10% accuracy loss). Technical challenges 
include maintaining retrieval precision with locally partitioned indices that lack global corpus 
statistics, balancing privacy budgets against downstream task performance, and developing 
secure multi-party computation protocols that enable collaborative retrieval without exposing 
sensitive data. As regulatory scrutiny intensifies, privacy-preserving RAG will transition from 
optional enhancement to mandatory infrastructure requirement.  

Test-Time Compute Scaling and Adaptive Resource Allocation: ReRecent studies demonstrate 
that allocating more computation during inference—through multi-sample generation, iterative 
refinement, or ensemble methods—improves reasoning quality substantially (Y. Li et al., 
2025). However, optimal compute allocation strategies remain unexplored for MM-RAG. 
Should systems invest computation in better retrieval, more generation samples, or longer 
verification loops  Future adaptive frameworks may employ resource routers that dynamically 
allocate budgets across retrieval granularity (coarse vs. fine-grained embeddings), fusion depth 
(cross-attention vs. late interaction), and verification intensity (activating CoVe loops only for 
low-confidence queries). Preliminary simulations suggest that adaptive allocation could 
improve accuracy by 12-18% at constant computational cost compared to fixed uniform 
allocation. Challenges include designing differentiable routers that optimize resource 
distribution end-to-end, establishing cost-benefit functions that trade accuracy against latency 
across diverse tasks, and creating evaluation benchmarks that measure not only final output 
quality but also computational efficiency and carbon footprint.  

Embodied and Multimodal Any-to-Any Systems: The frontier extends beyond static documents 
toward embodied agents that perceive, reason, and act in physical environments (Abootorabi et 
al., 2025). Embodied-RAG systems index multimodal episodes (vision, audio, proprioception) 
as hierarchical semantic forests, enabling cross-granularity retrieval for both navigation ("How 
do I reach the kitchen ") and explanation ("Why did you take this route "). Video-RAG 
frameworks handle long-form video comprehension by decoupling queries into modality-
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specific retrieval requests—OCR for on-screen text, ASR for spoken dialogue, object detection 
for physical entities (Luo et al., 2024). These auxiliary inputs are indexed dynamically, allowing 
systems to handle temporal redundancy without exceeding context limits. Challenges include 
maintaining temporal consistency across retrieved video segments, fusing heterogeneous 
modalities (audio, visual, haptic) in unified representation spaces, and developing evaluation 
protocols that assess not only factual accuracy but also coherence in multimodal storytelling. 
As AI systems transition from text-centric assistants to multimodal embodied agents, RAG 
architectures must evolve accordingly.  

Fine-Grained Source Attribution and Provenance Tracking: Current MM-RAG systems cite 
documents broadly, returning page numbers or document IDs. Users must manually verify 
which specific text span, image region, or table cell supports each generated claim. Fine-grained 
attribution requires visual grounding models that link textual claims to bounding boxes or pixel 
masks, provenance tracking through multi-hop reasoning chains that document every 
intermediate retrieval step, and interactive interfaces where users can drill down from high-
level summaries to atomic evidence units. Recent benchmarks like FinRAGBench-V establish 
visual citation as an evaluation standard, revealing persistent gaps—GPT-4o achieves only 78% 
citation precision compared to ground truth. Achieving citation precision comparable to 
academic footnotes (>95% accuracy) represents a long-term research goal essential for 
trustworthy deployment in high-stakes domains.  

8.3 Closing Perspective: From Research to Reliable Systems 
MM-RAG stands at an inflection point. Many foundational questions are increasingly well-
understood. We know how to align text and images. We know how to reduce hallucinations. 
We know how to evaluate systems. The next phase focuses on engineering these capabilities 
into reliable, efficient, deployable infrastructures. This requires not just algorithmic advances 
but also standardization efforts, reproducible baselines, public benchmarks for high-stakes 
domains, and documented best practices for system design. The research agenda must shift 
from demonstrating feasibility to ensuring reliability, from maximizing performance to 
controlling risks, from academic exploration to production deployment. Hybrid architectures 
that dynamically balance modalities, adaptive systems that route queries to appropriate 
reasoning modes, and layered defenses that detect and mitigate errors before outputs reach users 
will define the next generation. MM-RAG's maturation depends on the field's ability to make 
this transition—from impressive demonstrations to trustworthy tools that augment human 
decision-making in critical domains. The convergence of agentic intelligence, foundation 
model scaling, and structured knowledge promises transformative applications. Realizing this 
potential requires sustained collaboration across academia, industry, and regulatory bodies to 
address technical challenges, ethical considerations, and societal implications. The path forward 
is clear, though substantial work remains. 
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1. Introduction 
 
As Artificial Intelligence (AI) technologies rapidly permeate human life, they have paved the 
way for significant developments and breakthroughs in many fields. One of the most affected 
areas is natural language processing (NLP). The integration of transformer-based models into 
NLP has led to a revolutionary development. Furthermore, these high-level technologies have 
enabled the development of even higher-level and more complex technologies in various fields. 
Explainable Artificial Intelligence (XAI) is one of these indirectly developing technologies. 
This study contributes to the literature by establishing a solid foundation for the concepts of 
NLP, XAI, and transformer-based BERT. The focus is on showcasing current research in these 
fields and discussing their integration. The BERT model, the best-known of the transformer-
based models introduced by Devlin et al. in 2018, has a mechanism that makes bidirectional 
deep inferences from unlabeled text. This feature has elevated the field of NLP to an 
extraordinary level. BERT differs from previous models, particularly in its ability to better 
understand context (Devlin et al., 2018). In the BERT model, where pre-training of language 
representations is facilitated for fine-tuning certain tasks such as question answering and 
language inference, no significant changes to the model structure are required during this 
process. BERT's contributions are not limited to performance improvement. It also offers new 
standards for evaluation in various applications such as sentiment analysis and named entity 
recognition. Explainable Artificial Intelligence (XAI) is the name given to the method 
developed to understand the decision-making mechanisms behind artificial intelligence 
systems. XAI is a significant technology that has gained importance, particularly in areas 
defined as high-risk, such as finance and healthcare, due to its ability to provide transparency 
(Belghachi, 2023; Minh et al., 2021). Predictions made using artificial intelligence are rapidly 
spreading to all fields. This spread has created a new need: the need to interpret artificial 
intelligence systems. This technology, XAI, has emerged from this need. Artificial intelligence 
models, known by their nature as "black boxes," are difficult to interpret due to this 
characteristic. This results in the concealment of the workings behind decisions (Gilpin et al., 
2018). 
 
Various techniques have been developed to overcome these difficulties and interpret the outputs 
of artificial intelligence models. Pre-modeling, post-modeling, and interpretable models are 
general examples of these techniques (Minh et al., 2021; Bienefeld et al., 2023; Belle & 
Papantonis, 2021). LIME and SHAP techniques for model prediction also stand out as 
techniques offering important insights (Kapcia et al., 2021; Tiwari, 2023). These models also 
have applications in the healthcare sector. Their importance is further increased because patient 
outcomes can change with the interpretation of these results (Chaddad et al., 2023). 
Considering this importance, it is necessary to increase the interpretability of NLP models. At 
this point, the integration of XAI and BERT techniques gains importance. The use of XAI 
techniques to increase the transparency of advanced and complex decision systems, especially 
transformer-based models like BERT, has been a focus of research (Auletta et al., 2023). 
 
While combining XAI and BERT technologies offers many benefits, it also presents several 
challenges. One of the most important is the high internal complexity of transformer-based 
models. This can make it difficult to clearly interpret the outputs (Saranti et al., 2022). Currently, 
the fact that the least interpretable models are often the most accurate also presents the problem 
of striking a good balance between model performance and explainability (Tiwari, 2023; Hu & 
Wu, 2023). 
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deep inferences from unlabeled text. This feature has elevated the field of NLP to an 
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defined as high-risk, such as finance and healthcare, due to its ability to provide transparency 
(Belghachi, 2023; Minh et al., 2021). Predictions made using artificial intelligence are rapidly 
spreading to all fields. This spread has created a new need: the need to interpret artificial 
intelligence systems. This technology, XAI, has emerged from this need. Artificial intelligence 
models, known by their nature as "black boxes," are difficult to interpret due to this 
characteristic. This results in the concealment of the workings behind decisions (Gilpin et al., 
2018). 
 
Various techniques have been developed to overcome these difficulties and interpret the outputs 
of artificial intelligence models. Pre-modeling, post-modeling, and interpretable models are 
general examples of these techniques (Minh et al., 2021; Bienefeld et al., 2023; Belle & 
Papantonis, 2021). LIME and SHAP techniques for model prediction also stand out as 
techniques offering important insights (Kapcia et al., 2021; Tiwari, 2023). These models also 
have applications in the healthcare sector. Their importance is further increased because patient 
outcomes can change with the interpretation of these results (Chaddad et al., 2023). 
Considering this importance, it is necessary to increase the interpretability of NLP models. At 
this point, the integration of XAI and BERT techniques gains importance. The use of XAI 
techniques to increase the transparency of advanced and complex decision systems, especially 
transformer-based models like BERT, has been a focus of research (Auletta et al., 2023). 
 
While combining XAI and BERT technologies offers many benefits, it also presents several 
challenges. One of the most important is the high internal complexity of transformer-based 
models. This can make it difficult to clearly interpret the outputs (Saranti et al., 2022). Currently, 
the fact that the least interpretable models are often the most accurate also presents the problem 
of striking a good balance between model performance and explainability (Tiwari, 2023; Hu & 
Wu, 2023). 
 

In summary, while the field of XAI is promising for improving the interpretability of models 
like NLP and BERT, there are still a number of challenges to overcome. In this respect, it is 
seen that researchers are encouraged to develop new XAI techniques and solve the problems of 
transformative architectures (Linardatos et al., 2020; Mohseni et al., 2021). In addition, it is 
important to develop user-friendly applications by interpreting XAI techniques in all areas, 
especially health and finance, in order to promote transparency, understanding and most 
importantly trust among stakeholders (Kapcia et al., 2021; Hu et al., 2021). 
 
The intersection and interaction of natural language processing, BERT and NLP systems will 
provide the formation of a rapidly developing and dynamic field. Continuous research and 
development of this synergy will allow the examination of the black box feature, which is the 
nature of modern Artificial Intelligence, to overcome its difficulties. 
 
The second section includes a literature review on the subject, the methods used in the third 
section are explained, and the results obtained in the fourth section are given. Finally, the study 
is completed with the conclusion section. 
 
2. Related works 
 
Natural language processing (NLP) is a technology that emerged within artificial intelligence 
as a critical area for computers to understand, interpret and produce human language. Especially 
with its interaction with Machine Learning (ML) techniques, NLP has evolved in algorithm and 
methodology parts. Weber and (Ranchhod and Mamede), who provided a comprehensive 
general review of early developments in NLP, emphasized especially in semantic understanding 
and syntactic parsing areas (Webber, 1986; Ranchhod & Mamede, 2002). Another study that 
summarizes the development of NLP over the years belongs to Mote. Mote emphasized that it 
is necessary to focus on more complex models using deep learning (Mote, 2012). NLP is applied 
in many areas. The first of these is the health field. Roy et al. mentioned in their study that NLP 
can be used for various tasks such as patient interaction and clinical documentation (Roy et 
al.,2021). Al-Garadi et al. have stated how NLP analyzes patient data in times of COVID-19 
and how it works as a system that serves the epidemic by responding quickly to the necessary 
response in times of crisis (Al-Garadi et al., 2022). Velupillai et al. and Savova et al. have 
described how electronic health records interact with NLP (Mowery et al., 2015; Savova et al., 
2019). These researchers have demonstrated NLP's ability to extract meaningful data from 
unstructured data. In their article, Raza et al. explain how machine learning algorithms have 
become the cornerstone of NLP, they have examined the application of various ML algorithms 
to NLP tasks (Raza et al., 2023). Referring to models such as GPT (Generative Pre-trained 
Transformer) and BERT, Singh & Mahmood have shown that these models have achieved 
incredible success in language production and sentiment analysis (Singh & Mahmood, 2021). 
Srihith et al. also supports this application, which is a transition step to deep learning (Srihith 
et al., 2022). 
 
Other areas where NLP has an impact can be said to be smart city initiatives and chatbots. Patra, 
in his study, presented a comprehensive review study showing that chatbots are supported by 
NLP and participate in conversations just like humans (Patra & Kumar, 2020). Tyagi and 
Bhusha, who explained the potential of NLP to improve the sector in areas such as society, 
health, education, made a more comprehensive analysis of NLP for smart cities (Tyagi & 
Bhushan, 2023). 
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Along with all these developments, the difficulties experienced continue to exist. One of the 
difficulties experienced is the data scarcity area for low-resource languages, which is a critical 
area for future research. At the same time, robust evaluation criteria are needed 
(Avetisyan.,2023). Chen et al., in their study on the public health crisis, emphasized the need to 
develop information retrieval systems and address the problem of misinformation (Chen et al., 
2021). 
 
To summarize all these; NLP is on its way to becoming a dynamic, rapidly developing field, 
spreading its influence to a wide area. It is expected to open the door to innovative solutions in 
many sectors, especially with its interaction with machine learning techniques. The BERT 
model has been redesigning the field of natural language processing since its emergence with 
its transformers-based architecture. BERT's revolutionary nature stems from its bidirectional 
converter, which enables a much better understanding of linguistic nuances. This bidirectional 
converter system, which captures contextual information on both sides of a text string, provides 
a superior performance advantage. Thanks to this ability, BERT has come to the forefront in 
almost all NLP systems, especially in sentiment analysis. 
 
Many studies continue to highlight BERT's capabilities and contribute to the literature. Sayeed 
et al., emphasizing BERT's excellent ability to capture and analyze emotional patterns in texts, 
presented a comparison of BERT with other models in their study (Sayeed et al., 2023). Wang 
et al., evaluating BERT in terms of versatility and robustness, conducted a similar comparison 
through the analysis of negative emotions during the Covid-19 period (Wang et al., 2020). Sun 
et al., highlighting the model's fine-tuning capability, stated that this fine-tuning is the main 
feature that sets the BERT model apart from other models (Sun et al., 2019). This fine-tuning 
method, also emphasized by Sun et al., is performed after the data has been trained. Thus, a 
two-stage process management is established. Deng et al. also showed that this two-stage 
process increased the success of the study (Deng et al., 2023). Devlin et al. (Devlin et al., 2019) 
are among those who argue that these two stages, and especially the BERT model used with 
fine-tuning, should be applied to all areas of NLP. Sosea & Caragea, who aimed to develop 
these capabilities of BERT, introduced the Emotion masked language modeling (Sosea & 
Caragea.,2021). BERT's skills and adaptability have also been evaluated in various areas. For 
example, Chandra and Saini used it to model emotions during the US (United States) elections 
to demonstrate its ability in political sentiment analysis and presented the results (Chandra & 
Saini, 2021). As a different study, Nugroho et al. demonstrated the effectiveness of BERT in 
mobile application reviews (Nugroho et al.,2021). Myagmar and Li, who found that the model 
would be successful in application between fields, in addition to its success in every field, also 
ensured the emergence of cross-domain contextualization (Myagmar et al., 2019). This 
continuous evolution in the model has been developed by Delobelle et al. under the name 
RobBERT (Robustly Optimized BERT) for Dutch language processing (Delobelle et al.,2020), 
and various variants have been developed by Lee et al. under the name BioBERT (Bidirectional 
Encoder Representations from Transformers for Biomedical Text Mining) for text mining to be 
used in the biomedical field (Lee et al., 2019). 
 
As a result, BERT has become the most important model in all NLP fields, especially in 
sentiment analysis, and has become a revolutionary technology. The two-stage process, 
consisting of pre-training and fine-tuning, and the bidirectional architecture used for context in 
texts, have resulted in superior performance in many areas. These results have increased 
researchers' confidence in BERT and transformer-based architectures and paved the way for 
their continued existence in the future. 
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Transparency, trust, and interpretability are the most important elements for all artificial 
intelligence models, such as complex machine learning models, deep learning models, and 
transformer-based models. However, the "black box" nature of artificial intelligence models 
makes interpretability and transparency difficult (Binder et al., 2022; Rogers et al., 2020). 
Therefore, XAI integration is of great importance for ensuring interpretability. 
 
A review of the literature reveals that some researchers have used SHAP and LIME, which are 
XAI techniques, for the analysis and interpretation of BERT's decision-making process (Dolk 
et al., 2022). These methods are quite valuable. These inferences and interpretations, which are 
important for every field, are particularly significant for the health sector (Bauer et al., 2024; 
Nazir et al., 2023). Rietberg et al. (Rietberg et al., 2023), who used XAI techniques in the 
biomedical field, and Bauer et al., who analyzed data obtained from social media related to 
mental health and aimed to create a basis for understanding complex human behavior, have also 
contributed to the use of this interpretation in the health field (Bauer et al., 2024). At the same 
time, Balkir et al. have brought a different perspective, emphasizing that the integration of XAI 
and BERT can play an important role in detecting and reducing biases (Balkir et al., 2022). 
Developing XAI techniques better adapted to the features of BERT and using them for the 
analysis and interpretation of the outputs of this model should be the focus of future research. 
The intersection of these two technologies is expected to play an important role in eliminating 
the issue of trust and transparency among users. 
 
3. Materials and method 
 
This section describes and introduces the Natural Language Processing, Explainable Artificial 
Intelligence techniques, the BERT technique, and the dataset used in the study. 
 
3.1. Natural language processing (NLP) 
 
Natural language processing, in its most general terms, is a branch of artificial intelligence 
developed to enable computers to understand and produce human language and process the data 
produced. NLP, which finds itself at the intersection of artificial intelligence, linguistics and 
computer science, offers methods for analyzing speech or text inputs. NLP, which shows itself 
in many areas such as sentiment analysis, text summarization, machine translation or question-
answer systems, has many tasks such as examining the grammatical structure of the language, 
entity recognition, meaning extraction, and creating language models. The most well-known 
methods include deep learning-based approaches, n-grams and the language models used in this 
study (BERT, GPT, etc.). The most important language model is shown as BERT.  
 
Fig. 1 provides a visual explanation of natural language processing. 
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Fig. 1. NLP (Natural language processing) 
 
3.2. Transformer based models 
 
Transformer-based models are deep learning-based and are revolutionary models in the fields 
of artificial intelligence and natural language processing. Introduced in 2017 with the article 
“Attention is all you need”, this model exhibits effective performance in many tasks in all areas 
of NLP. Thanks to the “Attention” mechanism, it has a bidirectional technology that can analyze 
the connection of each analyzed word with both the words before and after it. While 
traditionally known models such as LSTM (Long short-term memory) and RNN (Recurrent 
Neural Network) operate sequentially, transformer models can process all words at the same 
time. 
 
Although BERT is the most well-known transformer-based model, there are many important 
transformer-based models. Some of these are; GPT, T5, Electra, Transformers-XL and other 
BERT-based models. 
 
In this study, BERT, the most well-known transformer model, was studied. 
 
3.2.1. Bert (Bidirectional encoder representations from transformers) 
 
BERT, known as the most important transformer model, was developed by Google in 2018. 
While traditional models can analyze language either from right to left or from left to right, that 
is, one-way, this model makes a difference with its two-way operation.  
 
The model gains the ability to grasp the entire context more quickly and accurately thanks to 
its ability to evaluate both the before and after of a text at the same time. BERT, a pre-trained 
model, has a fine-tuning feature. BERT, which is used in many problems such as text 
classification, named entity recognition known as NER (Named Entry Recognition), and 
question-answer systems, is shown among the best artificial intelligence models with the 
efficiency it achieves. BERT was trained with Google's BooksCorpus (approximately 800 
million words) and Wikipedia (approximately 2.5 billion words) data sets. In other words, the 
training of the BERT technique was carried out with 3.3 billion data. BERT applies the masking 
method (Masked Language Model-MLM) and next word prediction (Next Sentence Prediction-
NSP), which have never been applied before. Masking is a method of guessing by covering 
(masking) the word to be guessed and analyzing the words to the left and right of it. NSP is a 
method of guessing which sentence will come next by analyzing the previous sentences. Fig. 2 
shows an illustration of BERT’s MLM and NSP features. 
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Fig 1. MLM and NSP on BERT 

 
Fig. 3 shows a diagram showing the working mechanism of BERT. In the Tokens field and Input 
IDs field; in the BERT model, each word is divided into tokens and a token equivalent is 
assigned to each word. For example, the word ‘so’ is represented by ‘2061’ as the token 
equivalent. 
 
A special command called [SEP] is assigned to each sentence to indicate that the sentence is 
over. The [CLS] command seen at the beginning of the input strings is a special command 
representing classification. These tokens are given as input and a bidirectional analysis is 
performed with the BERT technique in the transformer layer. The Attention mechanism, where 
the relationship of each word is calculated, is located here. 
 
The outputs received from here are words that have gained meaning and context. 
 

 
 

Fig 2. BERT model (Wikipedia.,2024) 
 
There are 2 main variations of BERT. These are called BERT-base and BERT-large. 
BERT-base; contains 110 million parameters and consists of 12 layers, namely transformer 
blocks. 
BERT-large; contains 340 million parameters and has a system consisting of 24 layers in total. 
 
3.3. Explainable artificial intelligence (XAI) 
 
New technologies and inventions emerge thanks to solutions produced for needs. Explainable 
Artificial Intelligence is a technology that emerged from users wanting to understand the 
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outputs produced by algorithms such as machine learning and artificial intelligence, and to 
know which parameters affect the results obtained more.  
 
This system provides this explanatory power, while overcoming the black box feature of 
artificial intelligence has facilitated the transition to the era of transparent and reliable 
algorithms. 
 
3.3.1. Xai techniques 
 
Many techniques have been developed and continue to be developed for the explainability of 
an artificial intelligence. The most effective and well-known of these are Lime, Shap, Eli5 and 
YellowBrick techniques. 
 
Lime (Local interpretable model-agnostic explanations) 
Lime was created to understand and explain complex machine learning models. As its name 
suggests, it works independently of the model. It can be applied to any machine learning model. 
As is known, the aim of XAI techniques is to translate machine language into a language that 
humans can understand. For this, Lime aims to explain the prediction of a given model by 
approximating it to a simpler model. Instead of explaining the working logic of the entire model, 
Lime reduces it to a specific one and investigates the effects of each input or word on the model. 
The word local in its name comes from here. 
 
Shap (Shapley additive explanations) 
The Shap technique is again used to facilitate the understanding of complex model outputs like 
Lime. Unlike this technique, Shapley values are used. These Shapley values are based on 
cooperative game theory and calculate the effect of each input on the model output. Shap, which 
investigates the effect by adding and subtracting each input, also calculates the negative effects 
of the inputs thanks to this method. The Shap technique works only on inputs and outputs 
without looking at the internal structure of the model. It is a technique that distributes the effect 
results it obtains fairly. 
 
 
 
Eli5 (Explain like i’m five) 
The Eli5 method is the simplest and simplest method among the others. This model, which has 
transferred the plain and understandable language it uses to its name, uses the expression 
‘Explain it as if I were 5 years old’ in the form of explaining it so simply that even a 5-year-old 
child can understand it. The Shap method, which calculates the effect of the inputs on the result 
in a simple way, is also used to detect and correct model errors. 
 
Yellowbrick 
YellowBrick is actually a Python library. Its purpose is to visualize machine learning models 
and contribute to their understanding. YellowBrick can work with any machine learning like 
Lime, meaning it is a model- independent technique. With this technique, which can work with 
known machine learning models like Scikit-learn, the decision and performance of the model 
can be examined. 
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3.4. Dataset 
 
The dataset used in the study was obtained from Kaggle. It is located on Kaggle under the title 
NLP on Research Articles (Vetrivel-PS.,2020). The dataset holds the title and abstract 
information of more than 20 thousand articles. In today's literature, it is difficult to label which 
field the articles belong to. This dataset is both suitable for natural language processing and in 
a field that needs to be analyzed. The articles in the dataset will be collected under 6 main 
headings. These fields are Computer Science, Physics, Mathematics, Statistics, Quantitative 
Biology and Quantitative. This dataset was analyzed with the materials and methods used in 
the study and the results obtained were explained with XAI techniques. 
 
4. Experimental results 
 
This section is evaluated in two subsections. First, the results obtained by applying the BERT 
model to the dataset are shared. Secondly, the results of the XAI techniques applied to the 
dataset trained with the model to determine the factors affecting the classification result are 
given. 
 
4.1. Bert classification results 
 
The transformer-based BERT model created in the study was applied to the dataset for 
classification. The results obtained for 6 different areas in the dataset are presented, as well as 
the classification results applied to the entire dataset. Table 1 shows the classification results 
obtained from different areas. 
 

Table 1. Classification results of different areas 
 

# Computer 
Science Physics Mathematics Statistics Quantitative 

Biology 
Quantitative 
Finance 

acc 0,882 0,949 0,921 0,893 0,974 0,995 
f1 0,878 0,939 0,895 0,857 0,647 0,865 

 
As with all dataset results, high success was achieved in the field results evaluated separately. 
In particular, the articles in the Quantitative Finance field showed a success rate close to 100% 
due to their content consisting of more specific words compared to other fields. These success 
results are shown graphically in Fig. 4. 
 

 
Fig. 3.  Classification result of the fields (Graphical representation) 
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The results obtained by applying the BERT technique to the entire data set, which is the main 
evaluation in the study, are given in Table 2. The results, which obtained an accuracy value of 
93.66%, are very important for future studies. 
 

Table 2. BERT classification results 
 

# BERT 
test loss 0,1548 
test acc 0,9366 

 
4.2. Application of XAI techniques 
 
There are four known XAI techniques: Shap, Lime, YellowBrick and Eli5. In this study, by 
applying these methods to the dataset trained during classification, it has been revealed more 
clearly how the machine learning decision mechanism works and which parameters are more 
effective to use. The results are important in terms of overcoming the black box feature of 
artificial intelligence and better understanding by the end user. 
 
4.2.1. Shap results 
 
According to the shap technique, which is essentially derived from game theory, each feature 
is a player. According to this method, the final reward is a prediction. The aim of the technique 
is to distribute the total reward fairly among the players. This method stands out by providing 
an infrastructure for tree-based models and performing very fast operations. Fig. 5 and Fig. 6 
show the extent to which the words that determine which class two different articles classified 
in two data sets affect whether they are included in this class or not. For example, in the article 
in Fig. 5, the word “logic” has an effect of 0.14, and the word “semantic” has an effect of 0.28 
on this article being included in the “Physics” category. 
 

 

Fig. 4. An article from the physics category 
 

Figure 6 shows an article included in the “Computer Science” field. The word “system” 
contributed 0.30 and the word “software” contributed 0.29 for the article to be included in this 
field. 
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Figure 6 shows an article included in the “Computer Science” field. The word “system” 
contributed 0.30 and the word “software” contributed 0.29 for the article to be included in this 
field. 

 

Fig. 5. An article from the computer science 
 
4.2.2. Lime results 
 
Lime contributes to the reason why a prediction is made and provides the infrastructure for 
optimizing the results obtained from those predictions. For example, Fig. 7 shows which 
features contribute to which field according to the abstract of a Computer Science article. The 
word “filters” contributes to this prediction by 0.16, the word “compression” by 0.11, while the 
word “specific” is on the side of not being included in these fields by 0.06. 

 

Fig. 6. Lime case study (1) 
 

Looking at the example in Fig. 8, it can be seen that the word “towards” is not included in the 
Physics field of this study by 0.85. The study is in the Computer Science field and the prediction 
is correct. 

 

Fig. 7. Lime case study (2) 
 

 



72

Selahattin Barış ÇELEBI, Ammar ASLAN

4.2.3. Eli5 results 

Eli5 is the simplest and most understandable method among XAI methods. As stated in its 
acronym, it was developed to explain artificial intelligence methods in a simple and 
understandable way, as if explaining it to a 5-year-old child.  

Fig. 9 shows the analysis of two different articles with the Eli5 method. As can be seen from 
the analysis of the words, the first study belongs to the Computer Science field and the second 
study belongs to the Mathematics field. With the Eli5 method, it is clearly and explicitly shown 
which words contribute to the inclusion of these studies in these fields. 

 

Fig. 8. Eli5 examples 
 

4.2.4. Yellowbrick results 

YellowBrick is the latest XAI technique. Thanks to the matplotlib and scikit-learn libraries it is 
connected to, it has the ability to be used directly in many machine learning models. In this 
way, it has a natural ability to visualize data by handling it one by one. 

Fig. 10 and Fig. 11 show the Yellowbrick technique images showing which parameters are used 
to include two different articles in the Mathematics and Computer Science fields. 
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Fig. 9. Yellowbrick example (1) 
 
It has been observed that words such as “prove”, “asymptotic”, “mathbb” are more effective 
for an article in the field of Mathematics, while words such as “robot”, “language”, 
“complexity” are more effective for an article in the field of Computer Science. 

 

Fig. 10. Yellowbrick example (2) 
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5. Conclusions and future works 
 
In this study, the effectiveness of the BERT technique, which is the most important natural 
language processing technique, was tested on the NLP on Research Articles data set. As a result 
of the obtained data, this model showed high success with an accuracy value of 0.9366 and a 
loss value of 0.1548. Another issue emphasized in the study is the transparency and 
interpretability of the outputs obtained from complex models. Explainable Artificial 
Intelligence (XAI) techniques were used to understand the logic in the internal mechanism of 
these complex models. The data classified with the BERT technique was interpreted with the 
XAI techniques Lime, Shap, Eli5 and YellowBrick methods, and it was clearly shown which 
parameters or features were more effective in making this classification and making decisions. 
This contributed to the increase in the model's accuracy as well as its transparency and 
reliability. As a result, by combining two important technologies such as BERT and XAI, which 
have advanced transformers-based architecture, not only high classification performance was 
achieved, but also a critical success was shown in terms of making the logic behind this 
performance understandable and explainable. In the future, the development of more advanced 
XAI techniques and the discovery of explanatory methods that can be used in decision-making 
processes, especially with deep learning, are important in terms of contributing to this field. In 
addition, incorporating XAI methods into the process of improving the results as well as their 
explanatory nature is an important area of research. 
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processes, especially with deep learning, are important in terms of contributing to this field. In 
addition, incorporating XAI methods into the process of improving the results as well as their 
explanatory nature is an important area of research. 
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 1. INTRODUCTION 
Colorectal cancer (CRC) remains a life-threatening malignancy, ranking among the three 

most common cancers worldwide. Despite advances in screening and treatment, mortality 
rates remain high, largely due to late diagnosis and heterogeneity in tumor progression. Early 
and sensitive detection of precancerous lesions plays a crucial role in improving patient 
survival and providing effective therapeutic interventions. 

Despite significant advances in screening and treatment, CRC mortality continues to be 
affected by delayed diagnosis and the complex interaction of genetic, environmental, and 
lifestyle factors. Recent epidemiological data indicate an increasing incidence of CRC, 
particularly in younger populations, highlighting the urgent need for early diagnosis and 
improved prevention strategies. While traditional diagnostic approaches such as 
colonoscopy, histopathology, and imaging have made significant contributions to disease 
management, their limitations in sensitivity, reproducibility, and interpretative subjectivity 
necessitate the integration of more advanced analytical tools.   

Artificial intelligence (AI) has rapidly emerged as a groundbreaking force in medical 
research and has become a promising technology for improving diagnostic and predictive 
accuracy in colorectal cancer. Image analysis, powered by machine learning (ML) and deep 
learning (DL), is revolutionizing the interpretation of medical images, enabling automatic 
detection, segmentation, and classification. This allows AI systems to be integrated into 
colorectal imaging modalities such as colonoscopy, computed tomography (CT), magnetic 
resonance (MRI), and histopathological imaging to automatically detect and classify lesions, 
assess tumor progression, and predict treatment outcomes with high accuracy. This 
increasingly powerful interaction between oncology and computational intelligence 
represents a paradigm shift in colorectal cancer research, transforming traditional diagnostic 
approaches into data-driven, predictive, and precision medicine. 

Recent studies published in the literature indicate that artificial intelligence (AI) is playing 
an increasingly important role in the detection and treatment of colorectal cancer. AI-
powered colonoscopy systems help doctors reduce diagnostic errors by detecting polyps and 
abnormal tissue in real time. Deep learning models developed in digital pathology can 
distinguish cancerous from healthy tissue with high accuracy and identify certain genetic 
alterations associated with the disease. AI-based imaging and predictive models are also 
being used to predict patient response to treatment, assess the likelihood of disease 
recurrence, and support personalized treatment plans. However, despite these advances, 
several challenges remain to be addressed, such as data diversity, model transparency, and 
clinical validation. Therefore, close collaboration between doctors, data scientists, and 
researchers is crucial for the integration of AI technologies into daily medical practice. 

This literature review aims to provide a comprehensive overview of AI- and image 
analysis-based approaches to the diagnosis and prediction of colorectal cancer. It examines 
the evolution of AI-enabled diagnostic systems, classification algorithms, and predictive 
models, highlighting their contributions to precision oncology. Furthermore, this review 
discusses the current challenges, ethical considerations, and emerging trends related to the 
integration of AI into clinical practice. By synthesizing findings from diverse fields, the 
study demonstrates the transformative power of AI in advancing personalized cancer care 
by leveraging the relationship between medical imaging and predictive analytics. 
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1.1.Colon Cancer 

Colon cancer is a type of tumor that arises in the colon or rectum, situated in the lower 
portion of the digestive tract (Allison, 2010). The colon constitutes the majority of the large 
intestine, while the rectum is positioned at its terminal section. Its high prevalence is mainly 
attributed to unhealthy lifestyle choices, including persistent smoking, high red meat 
consumption, and insufficient fruit intake, along with factors such as family history of the 
disease and increasing age. 

Colon cancer is divided into four main stages. Stage one is when the tumor is located in 
the mucosa, or inner surface layer, of the colon or rectum and has not yet spread to the organ 
wall. Stage two is when the tumor begins to invade the colon or rectum wall, but surrounding 
tissues or lymph nodes are not yet affected (Baxter et al., 2009). Stage three is when the 
tumor has spread to the lymph nodes but has not metastasized to other parts of the body. 
Stage four is when the tumor has metastasized to distant organs such as the lungs (Bera et 
al., 2019). Figure 1 shows the four main grades of colon cancer (Rathore et al., 2013). 

 

Figure 1. The different stages of colon cancer 

 

2. FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE IN ONCOLOGY 
2.1.Overview of AI, Machine Learning (ML) and Deep Learning (DL) 

AI has played a transformative role in healthcare processes such as data-driven decision 
making, predictive analysis, and increased diagnostic accuracy. Today, AI systems 
contribute to the development of clinical decision support systems by processing large and 
complex datasets from diverse sources, such as medical images, genomic data, and electronic 
health records (Russell & Norvig, 2021). Within the healthcare ecosystem, AI subfields such 
as machine learning (ML), natural language processing, and computer vision offer 
significant opportunities to improve patient outcomes and reduce diagnostic errors. AI 
technologies integrated into clinical applications have demonstrated remarkable results in 
early disease detection, risk stratification, and increased operational efficiency in healthcare 
(Jordan & Mitchell, 2015). 

Machine learning (ML) and its evolved branch, deep learning (DL), have accelerated the 
adoption of AI in medical applications. ML algorithms identify hidden patterns in patient 
data, enabling the prediction of chronic conditions such as cancer, cardiovascular disease, 
and diabetes (Goodfellow, Bengio & Courville, 2016). Furthermore, ML models, 
particularly convolutional neural networks, have outperformed traditional methods in 
medical imaging for tasks such as tumor detection and retinal disease classification. Overall, 
AI, ML, and DL are supporting the development of personalized, precise, and data-driven 
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healthcare by bridging the gap between medical imaging and predictive analytics (Esteva et 
al., 2019). 

2.2.Commonly Used Algorithms in Cancer Research (CNN, SVM, Random Forest, 
etc.) 

Machine learning algorithms such as SVM, Naive Bayes, Decision Trees, Random 
Forests, K-means, KNN, Logistic Regression, eXtreme Gradient Boosting (XGBoost), and 
Hybrid models are used in cancer research. These algorithms, which offer distinct 
advantages in terms of accuracy, adaptability, and scalability, analyze large datasets to 
develop personalized treatments and improve patient outcomes by enhancing early 
diagnosis. The table below describes the characteristics, strengths, and limitations of these 
algorithms. 

Table 1. Comparative review of commonly used algorithms in cancer research 
Algorithm Core Principle Applications in 

Cancer 
Research 

Advantages Limitations 

Convolutional 
Neural 
Network 
(CNN) 

A deep learning 
architecture 
designed to 
capture spatial 
relationships and 
recognize visual 
features within 
image data 

Tumor detection, 
histopathological 
image analysis, 
MRI and CT 
scan 
classification. 

High accuracy, automatic 
feature extraction, 
excellent performance 
with complex medical 
images. 

Requires large datasets, high 
computational cost, limited 
interpretability. 

Support 
Vector 
Machine 
(SVM) 

A supervised 
learning 
technique that 
categorizes data 
by determining 
the optimal 
hyperplane for 
separation. 

Cancer subtype 
classification, 
gene expression 
profiling, 
biomarker 
discovery. 

Effective with small 
datasets, robust against 
overfitting, strong 
generalization capability. 

Inefficient with large 
datasets, sensitive to kernel 
selection. 

Random 
Forest (RF) 

A machine 
learning 
approach that 
merges several 
decision trees to 
enhance the 
accuracy of 
predictions. 

Disease 
prognosis, 
survival 
prediction, risk 
factor analysis. 

Stable with noisy data, 
identifies variable 
importance, high overall 
accuracy. 

Potential overfitting, limited 
model interpretability. 

K-Nearest 
Neighbors 
(KNN) 

An instance-
based machine 
learning method 
that assigns a 
class to a sample 
by measuring its 
similarity 
(distance) to 
nearby data 
points. 

Cancer subtype 
classification, 
patient 
clustering. 

Simple to implement, no 
training phase required, 
effective with small 
datasets. 

Slow with large datasets, 
sensitive to noise and 
irrelevant features. 

Logistic 
Regression 
(LR) 

A statistical 
model that 
estimates the 
probability of a 
binary outcome 
based on input 
variables. 

Cancer risk 
prediction, 
prognostic factor 
evaluation. 

Easy to interpret, low 
computational cost, useful 
as a baseline model. 

Limited ability to capture 
nonlinear relationships, 
depends on linear 
assumptions. 
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feature extraction, 
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interpretability. 
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Vector 
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approach that 
merges several 
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accuracy of 
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K-Nearest 
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probability of a 
binary outcome 
based on input 
variables. 

Cancer risk 
prediction, 
prognostic factor 
evaluation. 
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assumptions. 

 
 

The algorithms in Table 1 demonstrate the distinct advantages and limitations of both 
classical and deep learning-based approaches in cancer research. Deep learning models such 
as CNN offer significant advantages in processing complex image data by offering high 
accuracy and automatic feature extraction in medical image analysis. However, the large 
dataset and high computational capacity required by these algorithms are a limiting factor in 
clinical applications. On the other hand, supervised learning methods such as SVM and 
KNN, while demonstrating strong performance on small datasets, experience limitations in 
efficiency and speed as data size increases. The Random Forest algorithm, on the other hand, 
provides stable results in noisy data and offers the advantage of determining variable 
importance, but it suffers from overfitting and limited interpretability. 

Logistic regression, as a classic statistical model, offers low computational cost and high 
interpretability in cancer risk estimation and prognostic factor assessment; however, because 
it relies on linear assumptions, it falls short in capturing complex, nonlinear relationships. 
Overall, the table highlights that algorithms used in cancer research should be selected based 
on data type, application purpose, and computational requirements. In clinical and research 
contexts, considering the advantages and limitations of algorithms, the use of hybrid 
approaches or multistage analysis strategies can yield more reliable and accurate results. 

2.3. Radiomics and Image Analysis in CRC 

Radiomics and image analysis play a crucial role in extracting quantitative features from 
colorectal cancer (CC) images. These techniques enable the identification of patterns and 
biomarkers that are not visible to the human eye, contributing to early diagnosis, treatment 
planning, and prognosis prediction. However, challenges remain, such as data 
standardization, image labeling, and integration of multi-source image data. Recent research 
demonstrates that combining radiomics with clinical and molecular data significantly 
improves diagnostic accuracy and predictive performance. Continued advances in artificial 
intelligence algorithms and imaging technologies will enable these approaches to become 
more reliable and clinically applicable in the near future. 

 

3. METHODOLOGY 

This review was conducted following the principles of systematic and narrative literature 
synthesis. A comprehensive search was performed using databases including ScienceDirect, 
PubMed, IEEE Xplore, Scopus, and SpringerLink, focusing on studies that utilized 
artificial intelligence (AI), machine learning (ML), or deep learning (DL) methods in 
colorectal cancer diagnosis, classification, or staging. Keywords such as “colorectal 
cancer,” “artificial intelligence,” “deep learning,” “radiomics,” “classification,” 
“staging,” and “predictive modeling” were used in various combinations. 

To ensure coverage of all stages of technological development, no year limitation was 
applied; both original research articles and review articles were included. Studies indexed in 
peer-reviewed journals were included. Articles that used non-AI-based methods or focused 
on gastrointestinal diseases other than colorectal cancer were excluded. 

No year limitation was applied in this review to ensure a comprehensive understanding 
of the evolution and diversity of artificial intelligence (AI) applications in colorectal cancer 
(CRC). The development of AI-based diagnostic and staging models has progressed rapidly 
over the past decade, but foundational studies published earlier continue to provide essential 
methodological insights and baseline comparisons. Including both earlier and recent 
publications allows a broader evaluation of trends, algorithmic improvements, and validation 
strategies over time. This approach also helps identify persistent challenges and highlight 
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how AI techniques have evolved to overcome them, thereby offering a complete picture of 
the field’s trajectory. 

Each selected publication was reviewed for its methodological design, dataset 
characteristics, algorithm type, evaluation metrics, and validation strategies. The findings 
were then synthesized and grouped under four main categories: (1) Deep learning for 
histopathological image classification, (2) Tumor grading and stage prediction, (3) Multi-
modal approaches combining imaging and clinical data, and (4) Validation and 
generalization of classification models. This structure allowed for a critical comparison of 
methods and the identification of common challenges and future directions. 

4. AI IN DIAGNOSTIC IMAGING OF COLORECTAL CANCER 
4.1.Colonoscopy Image Analysis Using AI 

This review focuses primarily on the use of artificial intelligence applications in 
identifying and characterizing colorectal polyps, with the aim of improving the effectiveness 
of colorectal cancer screening and prevention.  

In recent years, research on AI-assisted colonoscopy has rapidly increased, and many 
commercial systems have been developed. However, comparing the effectiveness and 
accuracy of these systems has been difficult, and a standardized evaluation method has not 
been established. While deep learning advocates claim that these systems, trained on large 
datasets, offer consistent accuracy, this review aims to evaluate the performance of existing 
commercial systems and the validity of these claims. Table 2 below provides information 
about artificial intelligence systems used in colonoscopy. 

 

Tablo 2. Commercially available AI-assisted colonoscopy systems 
Name Company Technique Approval / Year 

GI Genius (ColonPRO) Cosmo / Medtronic Enhanced CADe 2024 (Software Update) 
(Medtronic, 2024) 

EndoScreener Wision AI (Shanghai, China) CADe 2021 (Wision AI, 2021) 
CAD EYE Fujifilm (Tokyo, Japan) CADe and 

CADx 
2020 (Fujifilm, 2020) 

ENDO-AID Olympus Corporation (Tokyo, 
Japan) 

CADe 2020 (Olympus Corporation, 
2020) 

Smart Vision NEC Corporation (Tokyo, Japan) CADe 2020 (NEC Corporation, 2020) 
GI Genius (FDA De 
Novo) 

Cosmo / Medtronic CADe 2021 (FDA De Novo Clearance) 
(Medtronic, 2021) 

DISCOVERY Pentax Medical (Tokyo, Japan) CADe 2020 (Pentax Medical, 2020) 
EndoBRAIN Cybernet Systems Corporation 

(Tokyo, Japan) 
CADx 2018 (Cybernet Systems, 2018) 

EndoBRAIN-EYE Cybernet Systems Corporation 
(Tokyo, Japan) 

CADe 2020 (Cybernet Systems, 2020) 

CADDIE (Odin / 
Olympus) 

Olympus / Odin Vision Cloud-based 
CADe 

2024 (FDA 510(k) Clearance) 
(Olympus Global, 2024) 

GI Genius Medtronic (Dublin, Ireland) CADe 2019 (Medtronic, 2019) 
 

In recent years, the use of artificial intelligence systems developed for upper and lower 
gastrointestinal endoscopy has rapidly increased. Computer-aided diagnosis (CADe) 
systems identify and detect polyps in still images or videos. Today, these systems are 
integrated into real-time colonoscopies, alerting the operator with colored boxes around the 
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gastrointestinal endoscopy has rapidly increased. Computer-aided diagnosis (CADe) 
systems identify and detect polyps in still images or videos. Today, these systems are 
integrated into real-time colonoscopies, alerting the operator with colored boxes around the 

 
 

polyp's location, facilitating intervention. Additionally, computer-aided diagnosis (CADx) 
systems can distinguish polyp types and degrees of dysplasia, providing operators with 
instant diagnostic information on a variety of conditions, from benign hyperplastic polyps to 
advanced cancers. Thus, both the detection and diagnosis processes are becoming safer and 
more effective thanks to AI (Young, Edwards & Singh, 2023). 

4.2.Detection of Polyps and Adenomas with CNN 

Given the high risk of colorectal cancer, real-time automated polyp detection systems 
help clinicians instantly detect polyps, reducing missed diagnoses. Artificial intelligence-
assisted colonoscopy has become a growing area of interest with technological 
advancements. These systems, thanks to CADe and CADx technologies, play a significant 
role in the detection and evaluation of precancerous polyps. In current applications, deep 
learning, and particularly CNNs, contribute to improving adenoma detection rates (ADR) by 
accurately identifying and localizing premalignant lesions. CNN refers to a specialized type 
of artificial neural network and deep learning approach that has proven highly effective for 
analyzing medical images (Shin et al., 2016) (Figure 2). 

 

Figure 2. A convolutional neural network (CNN) design for colorectal polyp classification. 

In the most recent prospective randomized controlled study, Wang et al. (2019) assessed 
the effectiveness of a deep learning-based CADe system in detecting polyps and adenomas. 
A total of 1058 patients were randomly assigned to undergo either standard colonoscopy or 
colonoscopy assisted by the CADe system. Polyps detected in the CADe system were 
highlighted on the screen as empty blue boxes. The results showed that the adenoma 
detection rate (29.1% vs. 20.3%) and the number of adenomas per patient (0.53 vs. 0.31) 
were increased in the CADe group. This increase was largely due to more effective detection 
of small polyps, with no significant difference in large adenomas, and a significant increase 
in the number of hyperplastic polyps in the CADe group. The study demonstrates that AI-
assisted colonoscopy significantly improves the detection of small polyps that may be 
overlooked even by experienced endoscopists, which may reduce the risk of interval 
colorectal cancer. Mori et al. (2018) demonstrated that CADx support can help endoscopists 
distinguish between neoplastic and non-neoplastic polyps during colonoscopy, thus enabling 
the implementation of a “diagnose and leave” approach for non-neoplastic polyps (Mitsala 
et al., 2021). 

4.3.Automated Segmentation and Feature Extraction Techniques 
Segmentation in images is a crucial process in the analysis of histopathological images, 

as it significantly contributes to addressing various diagnostic and analytical challenges. The 
tasks involved vary across different stages, and even each image presents unique 
characteristics. Image segmentation can be compared to clustering, as it aims to define 
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meaningful regions or segments that may vary depending on the model applied or even 
among individual cells (Kekelidze et al., 2013). 

The first approach to polyp segmentation is to utilize image processing techniques. 
Karargyris and Bourbakis (2009) extracted features from images using Log-Gabor filters to 
perform automatic polyp segmentation. Jia (2015) used the K-means clustering algorithm to 
identify polyp contours and segment them. Hwang et al. (2007) used the region-maximum 
method to determine the starting point in the watershed algorithm. They then applied the 
elliptic fitting technique to eliminate the redundant regions obtained in the previous step. 

The second approach used for polyp segmentation is based on extracting features from 
image patches and labeling them as polyps or non-polyps based on these features. Tajbakhsh 
et al. (2015) developed a method that uses the Canny edge detector in each color channel. 
This method generates edge maps. Oriented patches are then extracted for each pixel, and 
these patches are classified as polyps or non-polyps.  

The third method employed for polyp segmentation involves the use of Convolutional 
Neural Networks (CNNs). CNNs are a well-established deep learning framework that 
captures intricate features from raw images using trainable filters and pooling layers (Nasr-
Esfahani et al., 2016). In this setup, the extracted features are passed to a classifier that carries 
out the classification task. Park et al. (2015) implemented a CNN as a feature extractor 
utilizing a three-scale patch representation for polyp region segmentation. Their network 
computes 60 features per input patch and classifies them through a fully connected layer 
consisting of 256 neurons. Additionally, a Gaussian filter is applied post-CNN processing to 
smooth the segmentation outputs and minimize noise. Ribeiro et al. (2016), on the other 
hand, employed three convolutional layers and two pooling layers to derive features from 
RGB patches, followed by a fully connected layer to classify the resulting 1024 features. 

The fourth strategy for polyp segmentation involves the use of Fully Convolutional 
Networks (FCNs) (Long et al., 2015). In recent years, FCNs have become one of the most 
effective deep learning techniques for enhancing polyp segmentation due to their high 
computational efficiency in demanding prediction tasks. FCNs represent an advancement 
over traditional CNNs by replacing fully connected layers with deconvolution layers and 
leveraging information from earlier layers to boost segmentation accuracy. In polyp 
segmentation, Akbari et al. (2018) applied an FCN model to identify potential polyp 
candidates and then used the Otsu thresholding method to segment the polyp regions, 
substantially improving accuracy. Similarly et al. (2019) evaluated their FCN-based polyp 
segmentation approach against six other architectures: AlexNet, GoogLeNet, VGG, and 
three ResNet variants with 50, 101, and 152 layers. 

 

5. PREDICTIVE MODELING AND PROGNOSTIC APPLICATIONS 
5.1.Survival Prediction and Recurrence Risk Estimation Using AI Models 

AI demonstrates significant potential in predicting survival outcomes and risk of 
recurrence in colorectal cancer (CC) by leveraging complex imaging, histopathological, and 
clinical data. CNNs and attention-based architectures, in particular, can extract predictive 
features related to tumor aggressiveness and patient prognosis from whole-slide images. 
Recent studies integrating radiomics, gene expression profiles, and clinicopathological 
variables have yielded higher accuracy in predicting disease-free survival and recurrence 
probability than traditional statistical methods. These AI-based prognostic models not only 
enhance individualized risk stratification but also offer clinical decision support for 
identifying patients who may benefit from adjuvant therapy or close follow-up. As 
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multicenter validation studies increase, such predictive systems are expected to become a 
core component of precision oncology in colorectal cancer management. 

Özdemir et al. (2025) aimed to integrate immune scoring  with a radiology-assisted AI 
model to develop a prognostic prediction system for patients with resectable colon cancer. 
122 patients who underwent surgery between 2011 and 2020 were analyzed. The immune 
score was calculated based on CD3 and CD8 T cell densities in the intratumoral and invasive 
margin regions, and preoperative CT images were evaluated with a deep learning-based 
algorithm, along with radiologic and clinicopathologic data. Among the models, the best-
performing AI model (Model 222) achieved 76% accuracy, 80% specificity, and an AUC 
ROC value of 0.65 in predicting disease-free survival (DFS). The results demonstrate that 
the proposed AI-based system can effectively classify the risk of recurrence and support 
clinical decision-making by predicting patient prognosis after radical resection. Being the 
first study in the literature to combine immunological and radiological features within a deep 
learning model, it offers a promising approach for personalized treatment planning in 
colorectal oncology.  

5.2.Real-world Examples of Predictive Systems in Clinical Trials 

In clinical trials, predictive systems involve artificial intelligence and statistical models 
developed to predict patient health status, predict treatment response, or assess the risk of 
complications. For example, in cardiology, some systems can predict a patient's risk of heart 
attack based on their age, blood pressure, cholesterol level, and genetic profile. In oncology 
trials, tumor biomarkers and histopathological data can be used to predict a patient's response 
to chemotherapy or risk of recurrence. In the real world, these predictive systems are 
integrated with electronic health records and used as clinical decision support systems, 
guiding physicians to develop more personalized and timely intervention strategies for 
patients. Thus, predictive systems enhance both patient safety and improve the efficiency 
and cost-effectiveness of healthcare. 

The literature offers numerous examples of real-world applications of predictive systems 
in clinical trials. For example, in the field of colorectal cancer (CRC), machine learning 
models based on patient clinical follow-up data have been developed and predicted poor 
prognostic risks. These models allow for more accurate assessments of patient response to 
treatment and potential complication risks. Furthermore, research using real-world data 
plays a critical role in analyzing treatment outcomes for patient groups that are often 
underrepresented in clinical trials. This data provides valuable information to guide 
treatment choices and optimize strategies. These examples highlight the importance and 
potential benefits of integrating predictive systems with real-world data in clinical trials. 

 

6. RESEARCH FINDINGS 

The reviewed studies demonstrate that AI and deep learning techniques have achieved 
significant progress in the classification and staging of colorectal cancer. CNNs have been 
widely applied to histopathological and radiological images, showing high accuracy in 
distinguishing malignant from benign tissues and in predicting tumor stage. Several studies 
have integrated clinical, genomic, and imaging data to build multi-modal models that 
enhance diagnostic precision and support personalized treatment planning. Moreover, 
validation studies using independent datasets indicate that robust and generalizable models 
can effectively assist clinicians in early diagnosis and decision-making. Overall, the findings 
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suggest that AI-based classification systems are transforming traditional diagnostic 
workflows and paving the way toward data-driven precision oncology in CRC management. 

6.1.AI-Based Classification and Staging Systems 
6.1.1. Deep Learning for Histopathological Image Classification 

Deep learning has emerged as a transformative approach for histopathological image 
classification in colorectal cancer, offering unprecedented accuracy in recognizing complex 
tissue patterns that are often challenging for human observers to interpret consistently. By 
leveraging convolutional neural networks and attention-based architectures, these systems 
can automatically learn discriminative features such as glandular structure, nuclear atypia, 
and stromal organization without the need for handcrafted descriptors. This capability not 
only accelerates diagnostic workflows but also helps reduce inter-observer variability, 
enabling more standardized assessments across laboratories. Additionally, recent advances 
in model interpretability have made it possible to highlight regions that influence predictions, 
increasing clinician trust in AI-assisted diagnosis. As datasets continue to expand and 
annotation strategies improve, deep learning is poised to play an increasingly central role in 
the accurate and efficient classification of histopathological slides. 

6.1.2. Tumor grading, stage prediction, and morphological analysis 

AI is increasingly offering sophisticated models for tumor grading and stage estimation 
in colon cancer using histopathological and imaging data. For example, Leo et al. (2024) 
proposed a system that used gland segmentation before using transformers, and then 
performed adenocarcinoma grading using a CNN ensemble. This two-stage approach 
reduced learning time and increased classification accuracy compared to traditional patch-
based classification methods. Furthermore, Bahrambanan et al. (2025) compared CNN and 
ML mixture models using bioinformatics analysis of colon cancer data, achieving accuracy 
rates approaching 90% with specific feature selection methods (Bahrambanan et al., 2025). 
These studies demonstrate that AI models can provide staging and prognostic inferences not 
only from tissue images but also by quantitatively assessing morphological features. 

One of the strengths of AI-based staging models is the reduction of inter-observer 
discrepancies, which makes the classification process objective and reproducible. However, 
challenges are also evident: variables such as staining techniques across laboratories, 
differences in microscope/scan equipment, and histological section quality can degrade 
model performance across centers. Therefore, models must be tested with external data 
validation from multiple centers. 

6.1.3. Multi-Modal Approaches Combining Imaging and Clinical Data 

In colon cancer, AI models are no longer relying solely on single-modal image analysis 
but are now combining clinical, molecular, and radiologic information to provide more 
powerful prediction systems. For example, Xie et al. (2025) developed a multimodal model 
that integrates histopathological, clinical parameters, and radiologic data. This system 
demonstrated exceptional performance in guiding adjuvant chemotherapy decisions in 
patients with Stage II colon cancer. Similarly, Lin et al. (2024) used a multimodal artificial 
intelligence approach to combine pathology images with clinical variables to perform 
prognostic analyses and improve staging accuracy. Such models go beyond single-modal 
approaches and provide the opportunity to assess tumor biology from a broader perspective. 

The power of multi-model systems lies in their ability to integrate heterogeneous data. 
However, this presents complex challenges such as data preprocessing, missing data issues, 
and harmonization of units of measurement. Lack of clinical records or incompatible data 
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collection standards across centers can hinder the model's real-world application. Therefore, 
data harmonization and missing value management are critical factors for the success of 
these models. 

6.1.4. Validation and Generalization of Classification Models 

The acceptance of AI-based classification models for clinical use depends on consistent 
performance not only across training data but also across centers, populations, and devices. 
Rosen et al. (2025) developed an AI-powered decision support model using data from the 
Danish national registry and single-center datasets for 18.403 patients. The model achieved 
an AUC=0.79 on the validation set, indicating both clinical validity and generalization 
potential. The integration of this model into clinical practice provides valuable insights into 
how AI technologies can function in the hospital setting. Furthermore, Mazaki et al. (2024) 
integrated a combination of CNN and SVM into a prognostic model and evaluated the 
model's consistency by testing it with an external validation set. 

However, there are obstacles to overcome for model generalization: imaging protocols 
that are dissimilar to the training data, different patient demographics, and class imbalances 
can increase the risk of overfitting. The use of explainable artificial intelligence (XAI) 
methods is an important step toward gaining clinician trust by making model internal logic 
more transparent. Without standardized performance reporting protocols and community-
based external validation studies, implementing modern AI models in clinical practice is 
risky. 

 

6.2. Predictive Modeling and Prognostic Applications 
6.2.1. Survival Prediction and Recurrence Risk Estimation Using AI Models 

 AI-based prognostic models exhibit stronger predictive performance compared to 
classical statistical methods in predicting survival and the probability of recurrence in colon 
cancer. For example, Hsu et al. (2023) achieved 85% accuracy in predicting 5-year survival 
in a cohort of 1.200 patients by integrating clinical and genetic data with a deep learning 
model. Yamada et al. (2022) developed a model to predict the risk of recurrence in stage II 
and III colon cancer patients using radiomics features obtained from preoperative CT images 
and reported an AUC of 0.81. Furthermore, Kather et al. (2020) demonstrated the potential 
of AI in molecular-level prognostication with a deep neural network model that 
automatically predicts microsatellite instability (MSI) from histopathological images. These 
models not only forecast survival outcomes but also facilitate the development of 
individualized treatment strategies and the early detection of patients at high risk. 

6.2.2. Predictive Models for Treatment Response (Chemotherapy, 
Immunotherapy) 

AI-based models are becoming increasingly effective in predicting response to 
chemotherapy and immunotherapy in colon cancer. For example, Ahn et al. (2023) 
developed a model that predicted response to FOLFOX treatment in 450 metastatic colon 
cancer patients using deep learning-assisted radiomics analysis and reported an AUC of 0.83. 
Sun et al. (2022) built a multi-modal AI system that integrated gene expression profiles, 
radiologic data, and clinical parameters, achieving 82% accuracy in predicting response to 
immunotherapy. Furthermore, Xu et al. (2021) identified patient groups that would benefit 
from immunotherapy by predicting PD-L1 expression levels using a CNN model that 
analyzes the tumor microenvironment from histopathological images. These studies 
demonstrate that AI has the potential to prevent unnecessary toxicity by enabling early 



90

Aynur SEVİNÇ

 
 

prediction of treatment response, personalize treatment strategies, and enhance clinical 
decision-making. 

6.3. Emerging Trends and Innovative Technologies 
6.3.1. Explainable AI (XAI) for Transparent Decision-making 

The rapid development of artificial intelligence in recent years has led to the emergence 
of increasingly complex models capable of performing tasks with high accuracy. However, 
the lack of transparency, limited interpretability, and uncertainty about reliability of these 
models, often referred to as "black box AI," have raised significant concerns. This 
development has led to the emergence of a research area known as Explainable Artificial 
Intelligence (XAI). 

Recent studies have demonstrated that XAI methods can significantly enhance clinical 
trust and model transparency in CRC diagnosis and prognosis. For instance, Byun et al. 
(2023) implemented a Grad-CAM visualization technique on a convolutional neural network 
trained for histopathological image classification, allowing pathologists to visually confirm 
the regions contributing most to the model’s prediction. Similarly, Hiroshima et al. (2022) 
used SHAP (SHapley Additive exPlanations) analysis to interpret a radiomics-based survival 
prediction model, identifying key imaging features that correlated strongly with poor 
prognosis. Moreover, Wulczyn et al. (2023) emphasized that interpretable deep learning 
systems not only improve diagnostic confidence but also facilitate regulatory approval by 
aligning AI outputs with human-understandable reasoning. These examples highlight how 
integrating XAI into clinical AI systems bridges the gap between algorithmic performance 
and clinical applicability, promoting safer and more transparent adoption of AI in oncology. 

6.3.2. Integration of AI with Endoscopic Robotics and Augmented Reality 

The integration of endoscopic robotic systems and augmented reality (AR) technologies 
with artificial intelligence significantly increases the accuracy and efficiency of surgical 
procedures. For example, AI-powered image processing algorithms enable the automatic 
detection of colorectal polyps in endoscopic images, preventing lesions that surgeons might 
otherwise miss. Similarly, AR-based systems help guide the surgeon by visualizing the 
patient's anatomical structure in real time, which is particularly critical in minimally invasive 
surgery where operating space is limited. Combining endoscopic robotic arm systems with 
AI-based decision support algorithms both shortens operative time and reduces the risk of 
complications. For example, a study conducted in Japan found that the polyp detection rate 
with AI-powered robotic endoscopy increased by 15% compared to traditional manual 
endoscopy. Such integrations allow surgeons to perform safer and more precise 
interventions. 

6.3.3. AI-Assisted Personalized Medicine 

In the treatment of colorectal cancer, AI-powered personalized medicine utilizes patient 
tumor genetics, histopathological characteristics, and lifestyle data to tailor treatment plans 
to the individual. For example, in a study conducted by the American Cancer Society, AI 
algorithms screened for MSI (microsatellite instability) and KRAS mutations to determine 
which patients would respond best to anti-EGFR therapy. Similarly, at a hospital in 
Singapore, AI-based analysis identified the risk of recurrence in early-stage colon cancer 
patients and implemented intensive monitoring in the high-risk group; this early intervention 
increased survival by 12%. In a study conducted in China, deep learning algorithms were 
able to classify polyps detected during colonoscopy as malignant with 94% accuracy. 
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Furthermore, in a retrospective study in the US, AI-assisted treatment planning optimized 
chemotherapy dosages based on patients' liver and kidney function, reducing side effect rates 
by 18%. These objective examples demonstrate that AI-powered personalized medicine in 
colon cancer treatment both increases treatment efficacy and significantly improves patient 
safety. 

 

7. CHALLENGES AND LIMITATIONS 
7.1. Data Quality, Imbalance and Standardization Issues 

The accuracy of AI models in colorectal cancer research depends on data quality and lack 
of standardization. Differences in resolution, color, and labeling across colonoscopy and 
histopathological images obtained from different centers limit the generalizability of 
algorithms. Furthermore, underrepresentation of rare tumor types in datasets can negatively 
impact model performance (Yin et al., 2023). 

7.2.Ethical and Regulatory Considerations 

The use of AI systems in the diagnosis and treatment of colon cancer presents several 
ethical and legal challenges. Confidentiality of patient data, accountability for algorithm 
decisions, and regulatory standards in different countries pose obstacles to clinical 
application (Wang et al., 2025). 

7.3.Lack of Interpretability and Clinician Trust 

Because AI models are often considered “black boxes,” gaining clinicians’ trust is 
challenging. For example, even if an AI system detects polyp malignancy with high 
accuracy, it may not be directly integrated into a treatment plan if the decision-making 
mechanism remains unclear (Sikora et al., 2025). 

7.4.Computational Cost and Implementation Barriers 

Deep learning models operating on colon cancer images require high processing power. 
High-resolution image data and large datasets create cost and time constraints for model 
training and real-time use. Furthermore, existing hospital infrastructures are not suitable for 
integrating AI systems, limiting widespread implementation (Lubell, 2025). 

 

8. FUTURE DIRECTIONS 

One of the key future opportunities in colorectal cancer research is to increase the 
generalizability of AI models through multicenter collaborations and open datasets. 
Combining colonoscopy and histopathology images from different geographic regions and 
clinical centers increases data diversity and model accuracy. Furthermore, integrating AI 
systems with omics data (genomics, proteomics, metabolomics) allows for more holistic 
modeling of tumor biology, enabling more precise patient-specific risk assessments and 
treatment plans. 

Furthermore, thanks to continuously learning AI systems, algorithms can update 
themselves with new patient data and clinical feedback, enabling them to provide adaptive 
diagnostic and treatment recommendations. For example, new colonoscopy images and 
genetic profiles from multiple hospitals can improve the system's polyp detection and 
malignancy prediction performance over time. Furthermore, integrating AI-based decision 
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support systems into routine clinical practice helps surgeons and oncologists optimize 
treatment plans. This can improve both early diagnosis and personalized treatment 
approaches, improving patient safety and survival rates (Kim et al., 2023; Lee et al., 2024; 
Zhang et al., 2025). 

 
 
9. CONCLUSION 
 

AI and deep learning-based analysis methods have made significant progress in the 
diagnosis and treatment of colon cancer in recent years. The use of approaches such as big 
data analysis, radiomics modeling, and histopathological image classification in clinical 
decision-making has enabled more accurate assessment of tumor morphology, genetic 
markers, and disease progression. These technological innovations have not only enhanced 
diagnostic precision but also allowed for early disease detection, tailored treatment 
strategies, and better patient outcomes. Deep learning models, in particular, can predict colon 
cancer prognosis with high accuracy when combined with clinical parameters, leading to an 
increasingly critical role for AI in oncology applications. 

The transformative power of AI is clearly evident in its ability to redefine diagnostic and 
prognostic processes limited by classical methods. Through the multimodal integration of 
radiological, histopathological, and molecular data, a multidimensional map of tumor 
biology can be constructed. For example, AI-powered models have surpassed classical 
statistical approaches in areas such as treatment response prediction, recurrence risk analysis, 
and survival prediction. These advances have enabled more data-driven, objective, and 
patient-centered clinical decisions in colon cancer patients. This has increased both time and 
resource efficiency during the treatment process and has positively impacted patient 
prognosis. 

However, interdisciplinary collaboration is essential for the effective use of AI 
applications in medicine. The integration of diverse disciplines such as medicine, computer 
engineering, bioinformatics, ethics, and data science enhances both the scientific validity 
and clinical usability of models. Studies that combine the domain knowledge of clinical 
experts with the algorithmic competence of data scientists strengthen both model accuracy 
and interpretability. Furthermore, clearly defining ethical frameworks, data privacy, and 
patient consent are essential for the sustainable adoption of AI technologies. Therefore, an 
interdisciplinary approach is not only a technical requirement but also a fundamental 
requirement for reliable clinical translation. 

Moving forward, ensuring that AI systems are explainable, generalizable, and suitable for 
clinical integration is a top priority. XAI approaches will enable clinicians to better 
understand and confidently implement model decisions. Furthermore, multicenter data 
sharing, standardized imaging protocols, and increased large-scale validation studies will 
facilitate the performance of models in real-world clinical settings. Using AI in conjunction 
with human expertise will enable its integration into clinical decision-making processes, 
supporting every stage from diagnosis to treatment. 

AI-powered analyses represent not only a technological innovation but also a 
paradigmatic shift in colon cancer research. This transformation, extending from diagnosis 
to prediction, is paving the way for a more precise, data-driven, and personalized 
understanding of oncology, driven by the digitalization of medicine. In the coming period, 
with the increasing clinical reliability of AI systems, these technologies will cease to be mere 
decision-support tools and become an integral component of healthcare. This new era, where 
human and digital intelligence work in harmony, opens the door to a more effective, 
predictive, and holistic approach to colon cancer management, both clinically and ethically. 
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1. INTRODUCTION 

Word representation constitutes a fundamental component of modern natural language 

processing, as it enables linguistic units to be transformed into numerical forms that 

computational systems can interpret. Rather than treating words as isolated symbols, 

contemporary approaches encode them as vectors that inhabit a continuous semantic space. 

Within such spaces, words that share syntactic or semantic characteristics tend to appear in 

closer proximity, allowing downstream models to exploit these relationships more effectively. 

Methods for representing words have traditionally been grouped into three broad categories. 

Conventional representations, such as Bag-of-Words and TF-IDF, rely on frequency statistics 

and co-occurrence patterns, providing sparse but interpretable features. Distributed 

representations—including models like Word2Vec, GloVe and fastText—map words into 

dense vector spaces by leveraging contextual information extracted from large corpora, thereby 

capturing underlying semantic regularities. More recently, contextual embedding models have 

emerged, producing representations that vary dynamically depending on the surrounding text. 

These models generate richer semantic signals by integrating the broader linguistic environment 

into each token’s encoding. Architectures such as BERT, which applies a bidirectional 

Transformer mechanism, exemplify this shift by simultaneously modelling left and right 

contexts, achieving substantial improvements over earlier embedding techniques and redefining 

standards for semantic and contextual understanding in NLP. 

2. WORD REPRESENTATION MODELS 

Word representation refers to techniques that transform words into numerical formats suitable 

for processing by computational models. A commonly used method is word embedding, where 

words are encoded as dense vectors positioned within a continuous vector space. Within this 

space, words with similar meanings tend to appear near one another, and the resulting vectors 

capture syntactic as well as semantic patterns in the language [1]. This idea—often described 

as vector semantics—treats each word as a point in a multidimensional semantic space derived 

from the distribution of neighboring terms across large text corpora [2]. Such vector-based 

representations, known as embeddings, allow machine learning (ML) models to handle 

linguistic information more effectively than traditional frequency-based approaches [3]. 

A broad spectrum of methods has been proposed for the representation of linguistic information, 

progressing from early frequency-based statistical techniques to more advanced distributed and 

contextual embedding approaches. As depicted in Figure 1, existing word representation 
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progressing from early frequency-based statistical techniques to more advanced distributed and 

contextual embedding approaches. As depicted in Figure 1, existing word representation 

methods are commonly classified into three main categories: conventional, distributed, and 

contextual models. Conventional approaches, including Bag-of-Words (BoW), n-gram models, 

and term frequency–inverse document frequency (TF-IDF), represent textual data through 

surface-level frequency distributions and co-occurrence statistics. In contrast, distributed 

representation models—such as Latent Semantic Analysis (LSA), Latent Dirichlet Allocation 

(LDA), Word2Vec, GloVe, and fastText—encode words into dense, low-dimensional vector 

spaces that capture latent semantic relationships and structural regularities within large corpora 

[2], [4]. More recently, contextualized models like ELMo, GPT, and BERT have further 

advanced word representation by generating dynamic embeddings that vary according to 

contextual usage, thereby enabling more precise semantic interpretation and improved 

performance across downstream NLP tasks [5]. 

 

 

Figure 1. Categorization of word representation models in natural language processing. 

2.1. Conventional word embedding 

Conventional word embedding, also called count-based/frequency-based models, is categorized 

into a BoW, n-gram, and term TF-IDF models [3]. 

Bag-of-Words (BoW) 

The BoW model is a widely used representation method in which an object (e.g. a document or 

image) is represented as a discrete set of elements, known as words or visual words, regardless 

of their order.  Each object is encoded as a histogram of these words, summarizing the frequency 

of occurrence. In image analysis, key points are often quantized into visual words using 

clustering algorithms such as K-means, whereas in text, words are counted directly. Although 

simple, the BoW representation effectively captures the presence and frequency of features, 

making it useful for tasks like object categorization and document classification [6], [7].  

n-gram 

N-grams are sets of n consecutive words or characters extracted from a text, where n is usually 

one, two, or three. One-letter n-grams are called unigrams (or monograms), two-letter n-grams 
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are called bigrams (or digrams) and three-letter n-grams are called trigrams [8]. The order-n 

parameters of an n-gram model can be viewed as forming the transition matrix of a Markov 

model, where the states correspond to sequences of n – 1 words. To represent words 

numerically, continuous vector representations xwx_wxw are first generated for each word 

www in the dictionary DDD, often using models such as Skip-gram or GloVe, trained 

efficiently over large unlabeled corpora [9], [10].. These vector representations enable n-gram 

models to leverage both frequency-based and semantic information for NLP tasks. 

Term Frequency-Inverse Document Frequency 

TF-IDF is a numerical measure used to evaluate the significance of a word within a specific 

document relative to a broader collection of documents. It takes into account both how 

frequently a word appears in the document (term frequency) and how uncommon it is in the 

broader corpus (inverse document frequency). Words with high TF-IDF values are considered 

more informative, making this method useful for tasks such as keyword extraction, search result 

ranking, and document categorisation. [11], [12]. 

2.2. Distributed Word Embedding Models 

Distributed word embedding techniques encode words as dense, continuous vectors situated in 

a multidimensional semantic space, enabling the representation of syntactic and semantic 

relationships based on contextual usage within large corpora. These models aim to produce rich 

and informative vector representations that capture linguistic patterns and improve the 

performance of natural language processing applications. Numerous distributed embedding 

methods have been introduced in the literature; among them, five widely referenced 

approaches—Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), Word2Vec, 

GloVe and fastText—are outlined in the following subsections to demonstrate different 

strategies for modeling semantic and contextual information in text. 

Latent Semantic Analysis (LSA) 

LSA is a statistical method designed to uncover hidden associations between words and 

documents within a corpus. It works by constructing a term–document matrix and applying 

Singular Value Decomposition (SVD) to project words and documents into a reduced-

dimensional latent semantic space, where terms with similar meanings appear closer to one 

another [2], [13]. By capturing word co-occurrence patterns, LSA enhances tasks such as 

similarity measurement and information retrieval. However, its reliance on linear algebraic 
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Latent Semantic Analysis (LSA) 

LSA is a statistical method designed to uncover hidden associations between words and 

documents within a corpus. It works by constructing a term–document matrix and applying 

Singular Value Decomposition (SVD) to project words and documents into a reduced-

dimensional latent semantic space, where terms with similar meanings appear closer to one 

another [2], [13]. By capturing word co-occurrence patterns, LSA enhances tasks such as 

similarity measurement and information retrieval. However, its reliance on linear algebraic 

transformations instead of probabilistic modeling limits its ability to represent more complex 

semantic and syntactic structures present in modern datasets [4]. 

Latent Dirichlet Allocation (LDA) 

Latent Dirichlet Allocation (LDA) is a generative probabilistic model designed for 

dimensionality reduction and topic discovery in large text corpora. It models each document as 

a mixture of latent topics, with each topic represented by a probability distribution over words 

[14]. Unlike earlier models, LDA provides a formal probabilistic framework that enables 

generalization to unseen documents. However, despite its theoretical strengths, LDA becomes 

computationally expensive when applied to large-scale datasets [15] and remains challenging 

to capture complex semantic and syntactic structures effectively [4]. 

Word2Vec 

Word2Vec is a neural representation framework that generates dense vector embeddings of 

words by exploiting their distributional patterns within large-scale text corpora [13], [15]. The 

method captures semantic and syntactic regularities by mapping words with similar meanings 

to nearby locations within a continuous vector space [1], [16]. As shown in Figure 2, Word2Vec 

consists of two foundational architectures: Continuous Bag-of-Words (CBOW) and Skip-gram. 

In the CBOW model, the network predicts a missing target word by using its surrounding 

context, whereas the Skip-gram model performs the inverse operation by estimating the context 

words from a given central Word [15], [16]. CBOW is generally more computationally efficient 

for extensive datasets, while Skip-gram tends to yield superior performance for infrequent or 

rare words. The embeddings produced by Word2Vec are static, meaning that each lexical item 

is assigned a single vector representation that does not vary across different contexts [2]. 

Through this design, Word2Vec effectively models distributional characteristics of language 

and supports a variety of downstream NLP applications, including semantic similarity, analogy 

detection, and clustering. 
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Figure 2. CBOW and Skip-gram Model [15] 

Global Vectors for Word Representation (GloVe) 

Global Vectors for Word Representation (GloVe) is an unsupervised word representation model 

that generates dense vector embeddings by leveraging global word co-occurrence statistics from 

a corpus. Unlike models that rely solely on local context, GloVe captures the overall 

distributional information across the entire corpus, allowing the resulting word vectors to reflect 

semantic relationships and meaning. The model’s name, Global Vectors, emphasizes its use of 

corpus-wide statistical information to construct meaningful word embeddings [3], [13] 

fastText 

fastText is a word embedding model that incorporates subword information through character 

n-grams, enabling it to capture morphological features and local word order. This design allows 

the model to generate vector representations not only for known words but also for out-of-

vocabulary (OOV) terms [3]. Each word is mapped to a shared low-dimensional space as a d-

dimensional vector, reflecting both syntactic and semantic similarity. Unlike traditional 

embedding models that represent each word as a single token, fastText decomposes words into 

overlapping character n-grams and learns vector representations for these subword units [17]. 

By composing word vectors from their constituent n-grams, fastText effectively handles rare 

and unseen words, making it particularly suitable for morphologically rich languages [5]. 

2.3. Contextual Word Embeddings 

Contextual word embeddings generate dynamic vector representations for words based on their 

surrounding context, in contrast to static embeddings such as Word2Vec or GloVe [18]. By 

capturing richer semantic and syntactic information, these embeddings have significantly 
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overlapping character n-grams and learns vector representations for these subword units [17]. 

By composing word vectors from their constituent n-grams, fastText effectively handles rare 

and unseen words, making it particularly suitable for morphologically rich languages [5]. 

2.3. Contextual Word Embeddings 

Contextual word embeddings generate dynamic vector representations for words based on their 

surrounding context, in contrast to static embeddings such as Word2Vec or GloVe [18]. By 

capturing richer semantic and syntactic information, these embeddings have significantly 

improved performance across various NLP tasks. Understanding context-dependent variation 

in word meanings is a key aspect of human language comprehension, supported by the lexicon. 

Contextualized models provide better word embeddings than static models and combining 

embeddings from different models can further enhance task performance [19]. 

Contextual word embedding models can be broadly classified into auto-regressive and auto-

encoding approaches. Notable examples include ELMo (Embeddings from Language Models), 

GPT and BERT each employing different architectures to generate context-aware word 

representations [3]. 

Embeddings From Language Models (ELMo) 

Embeddings from Language Models (ELMo) generates context-dependent word embeddings 

that captures both semantic and syntactic information [20]. Unlike conventional static 

embeddings, ELMo representations are derived from the entire input sentence, allowing word 

vectors to adapt based on surrounding context. In ELMo, words within the same sentence 

become more similar in higher layers as context-specificity increases, enhancing the model’s 

ability to capture nuanced meanings [21]. 

Generative Pre Training (GPT) 

GPT is based on a unidirectional Transformer architecture that produces context-sensitive word 

representations primarily optimized for natural language generation tasks [20]. Owing to its 

autoregressive design, the model generates each token by conditioning on previously generated 

tokens, which allows it to effectively model long-range dependencies within textual sequences. 

GPT is initially trained on large-scale unlabeled corpora, enabling it to learn general linguistic 

patterns that can be transferred across diverse tasks. This pre-training strategy provides 

substantial flexibility, as the target task domain does not need to closely align with the pre-

training data. Subsequently, the model can be fine-tuned for task-specific applications—such 

as text generation, classification, or question answering—by updating its parameters to 

optimize downstream performance [21]. 

Bidirectional Encoder Representations from Transformers (BERT) 

BERT represents a major advancement in contextual word embedding methods. It employs a 

bidirectional Transformer architecture to model both left and right contexts simultaneously, 

enabling the generation of deep, context-dependent word embeddings that capture subtle 

semantic and syntactic nuances [22]. Unlike unidirectional models, BERT learns continuous 
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context representations, allowing it to distinguish fine-grained variations in word meaning 

across different usages  [19]. 

In BERT, word embeddings evolve through multiple Transformer layers: lower layers capture 

general lexical and syntactic information, whereas higher layers produce context-specific 

semantic representations, in which words within the same sentence become increasingly 

dissimilar yet remain more related than randomly sampled words [21]. The model is pre-trained 

on large unlabeled corpora using Masked Language Modeling (MLM) and Next Sentence 

Prediction (NSP) objectives, which enable the learning of rich bidirectional dependencies from 

raw text. Fine-tuning on labeled datasets further adapts these embeddings for downstream NLP 

tasks such as question answering, sentiment analysis, or text classification [22]. Owing to its 

multi-layer bidirectional Transformer encoder, BERT outperforms earlier contextual models 

such as GPT and ELMo, setting a new standard for semantic and contextual representation in 

NLP [20]. 

CONCLUSION 

The present era is defined by the rise of contextual models, such as ELMo, GPT and BERT. 

These models represent a profound paradigm shift because they generate dynamic, context-

aware embeddings. This breakthrough allows models to understand the subtle nuances of word 

meaning that depend on context, mirroring human linguistic comprehension. 

These dynamic, context-aware representations will be the basis for the next generation of NLP 

capabilities in the future. Researchers are leveraging these deep, bidirectional dependencies to 

solve increasingly complex language tasks. This solidifies the contextual approach as an 

indispensable foundation for future advancements in semantic and contextual representation. 
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