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1. INTRODUCTION

Academic achievement is a crucial outcome metric in educational systems, and identifying
its determinants is essential in constructing coherent, research-driven educational policies.
Student performance is affected by individual abilities, school-level characteristics, family
history, household setting, and behavioral indications such as absenteeism (Rakesh et al., 2025).
Comprehending these related variables is essential for advancing equity and enhancing
educational results across diverse populations. Global assessment programs like the Programme
for International Student Assessment (PISA) provide vast cross-national data sets, offering a
chance to enhance our comprehension of how sociocultural, economic, and contextual factors
effect learning results(PISA 2022 Database | OECD, n.d.). These data sets facilitate
comparative analysis and policy development by correlating student performance with
underlying factors such as socioeconomic position, familial support, and access to educational
resources.

Many studies indicate that socioeconomic status (SES) and the home environment are
among the most significant determinants of academic achievement(Chmielewski, 2019;
Guevara-Reyes et al., 2025; Jin, 2023; Liu et al., 2024; Sirin, 2005). Students from higher
socioeconomic backgrounds typically possess advantages derived from elevated parental
education levels, professional occupational status, and enhanced access to material and cultural
capital, all of which collectively foster greater cognitive development and sustained academic
engagement(Chmielewski, 2019; Jin, 2023). In contrast, students from disadvantaged
socioeconomic circumstances sometimes face educational disadvantages due to constrained
learning opportunities, diminished parental participation, and limited access to technology and
cultural resources(Davis-Kean, 2005; Jerrim & Macmillan, 2015).

Moreover, student behavioral factors, particularly absenteeism, are established predictors
of lower academic achievement, diminished motivation, and reduced social engagement.
Chronic absenteeism is consistently associated with lower academic performance, reduced
motivation, and weaker social integration within school settings(Gottfried, 2014; Kearney,
2008). The consequences of absenteeism are significantly intensified by familial and home
circumstances, as students from lower socioeconomic backgrounds encounter supplementary
obstacles to consistent attendance including insufficient transportation, minimal parental
oversight, or conflicting household responsibilities that further aggravate educational
disparities(Klein et al., 2020; Sosu et al., 2021).

In recent years, the application of machine learning (ML) methods in educational research
has expanded, providing powerful tools to analyze complex and nonlinear relationships among
multiple variables. Unlike traditional statistical techniques such as regression analysis, ML
models can flexibly capture multidimensional patterns within large-scale datasets(Chen &
Ding, 2023). Recent research has showed that classification and ensemble-based algorithms can
effectively predict academic achievement and reveal the relative relevance of contributing
factors, resulting in more precise and evidence-based policy making(Guevara-Reyes et al.,
2025). Despite all of these developments, existing ML literature is limited by the absence of
nationally representative datasets and the insufficient incorporation of comprehensive family,
household, and behavioral factors.
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The aim of this study is to employ machine learning techniques on the Tiirkiye subsample
of PISA 2022 to investigate how familial background, household context, digital access
indicator and absenteeism influence mathematics achievement. Specifically, first students were
categorized into high- and low-achievement groups, and multiple classifiers including Random
Forest, ExtraTrees and Gradient boosting were trained and optimized through hyperparameter
tuning to assess predictive performance and the relative importance of the features. The results
contribute to the growing body of evidence on how socioeconomic status, home environment,
absenteeism and digital access indicators shape learning outcomes among Turkish students,
underscoring the potential of ML methodologies as powerful tools for generating policy-
relevant insights in educational research.

2. METHODOLOGY

2.1 Data Set and Preprocessing

The dataset used in this research is from the Tirkiye subsample of PISA 2022, which is
administered by the Organisation for Economic Cooperation and Development (OECD). PISA
assesses 15-year-old students' knowledge and skills in mathematics, reading, and science from
participating nations. Turkey samples of PISA data set comprises cognitive performance scores,
detailed background questionnaires, and contextual factors that represent pupils' socioeconomic
position, home resources, digital access, and school-related behaviors. The analysis focused on
students who completed the mathematics assessment and provided valid responses to the
selected socioeconomic, household, and behavioral indicators. As illustrated in Table 1, the
dependent variable was mathematics performance (PVIMATH). To facilitate binary
classification, students were categorized into high- and low-achievement groups using the
median mathematics score of the training set as the threshold, thereby avoiding data leakage.
Independent variables were organized into three conceptual domains. The first domain included
family and home indicators reflecting students’ socioeconomic and cultural backgrounds.
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VARIABLE OECD Description

PVIMATH First plausible value for mathematics proficiency; OECD-generated estimate of
student math ability.

ESCS Economic, Social and Cultural Status Index derived from parental education
(HISCED), parental occupation (HISEI), and home possessions (HOMEPOS);
standardized across OECD.

HISCED Highest parental education level according to ISCED 2011 (0-8). Codes 9/10
represent missing values.

PAREDINT Parental involvement index based on student-reported parental engagement in
learning and school activities.

HISEI Highest parental occupational status measured using the ISEI scale (16-90).
Negative values indicate invalid or missing data.

WORKHOME | Indicates whether the student has a quiet place to study at home. Negative responses
represent invalid values.

HOMEPOS Home Possessions Index reflecting cultural and educational resources available at
home (books, internet, study desk, etc.).

ICTHOME Availability of ICT devices at home (e.g., laptop, desktop computer, tablet);
measures household digital resources.

ICTAVHOM | Student-reported accessibility of ICT tools at home; indicates whether digital
resources are usable.

ICTQUAL ICT Quality Index measuring student perceptions of device performance and
internet quality. Values < —6 represent OECD-coded missing data.

ST062Q01TA | Frequency of arriving late to school in the past two weeks.

ST062Q02TA | Frequency of skipping a full school day in the past two weeks.

ST062Q03TA | Frequency of skipping classes (partial absenteeism) in the past two weeks.

ST004DO1T Gender (1 = Male, 2 = Female). Converted to binary in analysis

(Male =0, Female = 1).

Table 1: OECD Definitions of Variables Included in the Analysis

This domain included the Economic, Social, and Cultural Status (ESCS) index, which
summarizes parental education, occupation, and household possessions as a composite measure

10
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of socioeconomic advantage. Parental education levels were represented by HISCED (highest
parental education in ISCED levels) and PAREDINT (average parental education level), while
parental occupational status (HISEI) captured the highest International Socio-Economic Index
of Occupational Status within the family. Indicators of home-learning resources included
WORKHOME (availability of a quiet study space), HOMEPOS (overall household educational
resources and possessions), and Information and Communication Technology (ICT) related
items such as ICTHOME (ICT resources available at home), ICTAVHOM (average ICT
availability) and ICTQUAL (ICT Quality Index). The second domain comprised absenteeism-
related items (ST062Q01TA-ST062Q03TA), which measured students’ frequency of missing
school or arriving late, serving as behavioral indicators of engagement and discipline. The third
domain included a control variable for student gender (ST004D01T; male or female), enabling
the model to account for potential gender-related differences in mathematics performance.

First, the dataset underwent a series of preprocessing procedures. Invalid or special
response codes were treated as missing values following OECD conventions (e.g., 9, 10, or
negative entries) for ensuring cross-country comparability (PISA 2022 Technical Report,
2024).Variables with more than 60% missingness were excluded from the analysis, and the
remaining missing values were imputed using the median of each variable. The variable
HOMEPOS was excluded due to excessive missingness (>60%), while all remaining features
were used in model development. The dataset was balanced across achievement classes, with
2,537 low-achievement and 2,538 high-achievement cases in the training set and 1,082 and
1,093 cases, respectively, in the testing set. After that, mathematics scores were transformed
into a binary outcome (high vs. low achievement) using the median value of the training set
only, preventing any data leakage into the test set.

2.2. Classification and Hyperparameter selection

After pre-processing, the dataset was divided into training (70%) and testing (30%)
subsets using a stratified random split with a fixed random seed (N=42) to ensure
reproducibility. Then, three tree-based classifiers such that Random Forest classifier (Breiman,
2001) , ExtraTree (Geurts et al., 2006) and GradientBoosting (Friedman, 2001) were utilized to
classify low and high mathematics achievement. The hyperparameters of the classifiers were
optimized by the RandomizedSearchCV with 20 randomized iterations and threefold cross-
validation. The hyperparameter search includes the number of estimators, maximum tree depth,
minimum samples required for splits and leaves, learning rate (for Gradient Boosting),
subsampling ratios, and feature selection strategies (sqrt or log2). The area under the receiver
operating characteristic curve (ROC—AUC) served as the primary metric for model tuning.
Then, model performance was evaluated on the test set using accuracy, macro-averaged F1, and
ROC-AUC scores. Finally, feature importance values were extracted from the optimized
classifiers using Gini impurity criterion which quantifies node heterogeneity(Breiman et al.,
2017). Features yielding greater reductions in impurity across all trees were assigned higher
importance scores to highlight the relative contribution of each predictor to mathematics
achievement.

11
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2.3. Statistical Analyses

A two-sided Mann—Whitney U tests (Mann & Whitney, 1947), which are non-
parametric statistical test used to evaluate whether two independent groups differ in the
distribution of a continuous or ordinal variable, were applied to determine whether absenteeism
(ST062Q01-03TA) and ICT-related indicators (ICTHOME, ICTAVHOM, ICTQUAL)
differed significantly between high and low mathematics achievement groups. The remaining
of features such as ESCS, HISEI, HISCED, PAREDINT, WORKHOME, HOMEPOS were not
included in the statistical analyses because they were OECD- standardized composite indexes.
In order to provide a clear visualization of distributional differences, skewness patterns, and
potential group separation, violin plots were generated to visually compare the distribution of
absenteeism and ICT-related variables between high and low mathematics achievement groups.

3. RESULTS

In this study, preprocessing steps include data cleaning, handling missing values, and
converting the continuous PVIMATH score into high and low achievement groups using a
median split. Then, the cleaned dataset was divided in to training (70%) and testing set (30%)
by random seed fixed stratified random split. After, three-tree based classifiers such that
Random Forest, ExtraTrees and Gradient Boosting were utilized to separate high and low
mathematic achievement. Model tuning was conducted to obtain optimal ROC-AUC score by
RandomizedSearchCV algorithm (20 iteration, three-fold cross validation). The optimal
hyperparameters of the classifiers were demonstrated in Table 2. After hyperparameter tuning,
the classifiers were trained and tested to separate between low and high mathematic

achievement.

Classifier Optimal hyperparameters

Random Forest n_estimators=339, max_depth=10, max_features='log2',
min_samples_split=3, min_samples_leaf=2

ExtraTree n_estimators=337, max_depth=10
max_features="log2', min_samples_split=8, min_samples leaf=4

GradientBoosting n_estimators=364, learning_rate=0.03, max_depth=3,
subsample=0.8

Table 2: Optimal hyperparameters of each classifier in the classification between low and high
achievement mathematic groups.

12
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Table 3 demonstrates that GradientBoosting provides most balanced and effective
separation in the separation between low and high mathematics achievement with the highest
accuracy, sensitivity and ROC-AUC of 67 %, 68% and 0.743, respectively. Similarly, Random
Forest classifier yields moderately strong and balanced performance in the classification of low
and high mathematics achievement with an accuracy of 66.1%, sensitivity of 64.5%, specificity
0f 67.8%, and ROC-AUC of 0.729. In comparison, ExtraTree provides a highest specificity of
73.5% indicating strong effectiveness in identifying low-achieving students, whereas a
sensitivity of 57.8% yields a higher rate of misclassification among high-achieving students.

Classifier Accuracy Sensitivity Specificity F1 ROC-
AUC
RandomForest 66.1% 64.5% 67.8% 0.661 0.729
ExtraTrees 65.6% 57.8% 73.5% 0.654 0.724
GradientBoosting | 67.0% 68.0% 66.1% 0.670 0.743
RandomForest 66.1% 64.5% 67.8% 0.661 0.729

Table 3. Performance metrics of each classifier in the classification between low and high
achievement mathematic groups.

Feature importance analysis based on the Gini impurity criteria was visualized in the
heatmap shown in Figure 1, illustrating the relative contribution of each feature across the three
ensemble classifiers in distinguishing high and low mathematics achievement. In this heatmap,
the x-axis represents the machine learning models (RandomForest, ExtraTrees, and
GradientBoosting), and the y-axis lists all features included in the analysis. The color intensity
within each cell indicates the magnitude of the feature’s importance, with darker shades
reflecting stronger influence in the corresponding model. Across models, socioeconomic
indicators such as ESCS, HISEI, and HISCED show the highest intensities and demonstrate
consistent predictive power. ICT-related variables such as ICTQUAL and WORKHOME
provide moderate contributions, while features like ICTHOME and ST004DO1T appear with
lighter intensities and show weaker or more model-specific relevance. Overall, the heatmap
provides a concise comparison of how each classifier weights the input features and highlights
the dominant role of socioeconomic background in predicting mathematics achievement.

13
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Feature Importance Heatmap Across Classifiers

RandomForest ExtraTrees GradientBoosting
Model

ESCS

HISCED

HISEI

ICTAVHOM

ICTHOME

ICTQUAL

Feature

PAREDINT

Importance

ST004D0O1T

ST062Q01TA

ST062Q02TA

ST062Q03TA

WORKHOME

Figure 1: The heatmap of feature importance for each classifier in the classification
between low and high low and high achievement mathematic groups.

Finally, two-sided Mann-Whitney U test were employed to assess whether absenteeism
and ICT-related indicators differed significantly between low and high achievement
mathematic groups separately followed by violin plots for clear visualization as illustrated in
Figure 2. For the attendance items (ST062Q01TA-ST062Q03TA), the statistical results
showed significant group differences for ST062QO01TA (p = 1.63x107°) and ST062Q03TA (p
= 2.95x107"7), whereas ST062Q02TA did not exhibit a significant effect (p = 0.354). These
findings are reflected in the violin plots, where ST062QO01TA and ST062Q03TA display visible
shifts in median values and distributional density between groups, while ST062Q02TA shows

Achievement Level
[ High Achievement 23 Low Achievement

Attendance Items (ST062Q01-03TA) ICT-related Variables

=0.0531 =0.367 =023
p=1.63e-09 p=0.354 p=2.95e-17 L P P

=

w

Value
Value
~

-

ST062Q01TA ST062Q02TA STO62Q03TA ICTHOME ICTAVHOM ICTQUAL
Variable Variable

Figure 2: Distribution of Absenteeism and ICT-Related Indicators by Achievement Group

substantial overlap consistent with the non-significant test outcome. For ICT-related variables
(ICTHOME, ICTAVHOM, ICTQUAL), none of the Mann—Whitney U tests reached statistical
significance (all p> 0.05), and the violin plots similarly illustrate overlapping distributions with
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comparable medians and variability across achievement levels. Taken together, the combined
statistical and graphical evidence indicates that absenteeism patterns, but not ICT resource
indicators, differentiate students’ mathematics achievement in the PISA 2022 Tiirkiye dataset.

4. DISCUSSION

This study investigated how socioeconomic, absenteeism-related, and ICT-related
indicators contribute to predicting mathematics achievement in the PISA 2022 Tiirkiye dataset
using three ensemble machine learning models. Among the classifiers, Gradient Boosting
achieved the most balanced performance, while Random Forest also showed strong predictive
ability. ExtraTrees produced the highest specificity but lower sensitivity, indicating that it was
more effective at identifying low-achieving students than high-achieving ones, a pattern
consistent with prior findings that extremely randomized tree models can exhibit greater
variance and class-specific instability due to their high level of randomness(Fernandez-Delgado
etal., 2014).

Across all models, feature importance results consistently highlighted socioeconomic
indicators such as ESCS, HISCED, and HISEI as the most influential predictors of mathematics
performance. ICT-related features made only moderate contributions, and gender showed
minimal predictive value. These findings support prior evidence that socioeconomic
background remains a dominant factor in explaining achievement differences.

The Mann—Whitney U test results further showed that two absenteeism indicators
significantly differentiated high and low achievement groups. This reinforces the established
link between attendance patterns and academic outcomes(Gottfried, 2014; Kearney, 2008). In
contrast, none of the ICT-related variables demonstrated significant group differences, and the
corresponding violin plots showed highly overlapping distributions. This suggests that access
to ICT resources alone does not translate into measurable differences in mathematics
performance without considering how these resources are used(Hu et al., 2018; Skryabin et al.,
2015).

5.CONCLUSION

In summary, this study applied machine learning techniques to the Tiirkiye subsample
of PISA 2022 in order to better understand how socioeconomic background, household context,
absenteeism, and digital access indicators influence mathematics achievement. The findings
reinforce the central claims outlined in the introduction: socioeconomic conditions remain the
most powerful predictors of academic performance, reflecting long-standing patterns linked to
parental education, occupational status, and access to cultural and material resources.
Absenteeism indicators also contributed meaningfully, highlighting the importance of
consistent school engagement for sustaining academic success. In contrast, ICT-related
variables did not differentiate high- and low-achieving students, suggesting that access to
technology alone is insufficient to generate measurable gains in mathematics outcomes. By
leveraging ensemble-based classifiers, this study demonstrates the value of machine learning
for capturing complex, nonlinear relationships within large-scale educational datasets and for
revealing the relative weight of key determinants. Collectively, these results underscore the
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need for policies that address socioeconomic inequalities, support regular attendance, and
promote meaningful and pedagogically guided digital engagement.

6.FUTURE WORK

Although the current study provides insightful information about the relative impact of
behavioral, familial, socioeconomic, and digital factors on mathematical achievement, it should
be noted that there are a number of limitations. Initially, the study used cross-sectional data
from the PISA 2022 Tiirkiye subsample, which limits the ability to draw conclusions about
causality and makes it impossible to monitor how learning outcomes evolve over time Second,
whereas the GradientBoosting effectively captures nonlinear correlations, it remains a data-
driven approach, and unobserved contextual factors such as school quality, teacher
effectiveness, or regional resource inequities may continue to contribute to unexplained
variance. Additionally, the use of self-reported questionnaire items may introduce measurement
bias, particularly for indicators related to ICT access and student behavior. Future research
should address these limitations by employing longitudinal and cross-country datasets to better
capture causal pathways and temporal dynamics in the relationship between digital access,
family engagement, and academic performance. Integrating sophisticated modeling techniques
with artificial intelligence frameworks such as deep learning techniques might enable
researchers to disentangle individual, household, and school-level effects, thereby providing a
more comprehensive understanding of educational disparities.
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1. Introduction

Retrieval-Augmented Generation (RAG) reduces hallucinations by grounding language models
in external evidence. Traditional RAG systems process text effectively but fail when documents
contain tables, charts, diagrams, and images. Converting visual elements to text through Optical
Character Recognition (OCR) destroys spatial layout, structural hierarchies, and comparative
relationships. This information loss propagates through retrieval and generation stages,
producing hallucinations rooted in incomplete context. Multimodal RAG (MM-RAG)
addresses this limitation by processing heterogeneous data types within unified or aligned
representation spaces.

This survey makes three contributions to the MM-RAG literature:

e Architectural Taxonomy: We trace the evolution from discrete OCR-based pipelines to
unified vision-language models and emerging agentic systems, clarifying trade-offs
between semantic fidelity, computational efficiency, and hallucination risk.

e Hallucination Analysis: We establish a taxonomy distinguishing factuality error
(contradicting real-world facts) from faithfulness errors (contradicting provided
context), then categorize mitigation strategies by architectural intervention point and
hallucination type.

e Evaluation Synthesis: We systematically compare benchmarks from object-level
metrics (POPE) to comprehensive multi-dimensional frameworks (MMHal-Bench,
TREC RAG Track), identifying gaps in current evaluation protocols and documenting
reproducible resources for rigorous experimentation.

The remainder of this paper is organized as follows. Section 2 provides background on text-
only RAG and motivates the transition to multimodal paradigms. Section 3 categorizes MM-
RAG architectures from OCR-based approaches to late-interaction models. Section 4 analyzes
hallucination mechanisms specific to multimodal contexts and their architectural dependencies.
Section 5 surveys mitigation strategies including self-verification, visual grounding, and
adaptive retrieval. Section 6 examines evaluation benchmarks and protocols. Section 7
investigates applications in medical imaging, financial analysis, and legal document processing.
Section 8 concludes with open challenges and future research directions.

2. Background and Related Study

2.1 Text-Only RAG: Evolution and Core Paradigms

RAG augments parametric knowledge in language models with dynamic, verifiable non-
parametric information retrieved from external sources (Lewis et al., 2020). Traditional RAG
operates through a retrieve-then-generate workflow. The system first converts a user query into
a vector representation, retrieves semantically similar text fragments from an external
knowledge base, then presents these fragments as context to the language model for generation.
This architecture addresses the limitations of purely parametric models, which suffer from
outdated knowledge, factual errors, and hallucinations when generating content beyond their
training data.

The evolution of RAG architectures follows three distinct paradigms (Gao et al., 2023). Naive
RAG employs simple retrieve-then-generate workflows with fixed chunking strategies and
single-stage retrieval. Advanced RAG introduces pre-retrieval optimization (query rewriting,
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expansion) and post-retrieval refinement (reranking, context compression). Modular RAG
decomposes the pipeline into specialized components for indexing, retrieval, and generation,
enabling domain-specific customization and iterative refinement. Recent studies further
extends these paradigms through self-verification mechanisms, where models assess retrieval
relevance and generation faithfulness before outputting results (Asai et al., 2024). While these
advances improve text-based retrieval and generation, they assume a fundamental constraint:
all information can be adequately represented as text. This assumption breaks down when
documents contain non-textual elements such as tables, charts, diagrams, and images.

2.2 The Limitations of Text-Only RAG in Visual Contexts

Documents in critical domains inherently combine text and visual modalities. Academic papers
integrate equations, plots, and architectural diagrams. Financial reports embed earnings tables,
trend charts, and performance comparisons. Medical records pair clinical notes with X-rays,
CT scans, and pathology images. Technical manuals present assembly instructions through
annotated photographs and exploded-view diagrams. In these contexts, visual elements are not
supplementary—they carry information that text cannot adequately represent. Traditional text-
based RAG faces fundamental limitations when processing multimodal documents. Converting
visual content to text through OCR destroys three critical information types. Spatial layout
disappears when a two-column financial table becomes a linear text sequence, severing
relationships between row headers and data cells. Visual comparisons vanish when a bar chart
showing quarterly growth trends reduces to isolated numbers without graphical context.
Structural hierarchies flatten when nested diagrams with parent-child relationships become
unordered text fragments (Faysse et al., 2024). Figure 1 compares traditional text-based RAG
(1a) with MM-RAG (1b) architectures, showing how the integration of visual encoders
transforms the process from a linear pipeline to a dual-stream alignment mechanism.

Text-Only RAG
tecture
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Text On
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h
Retrieve Top-K i
DB EEmEYE oD ‘—| Standard LLM Final Text Output
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Fig. 1. Traditional Text-Only RAG (a) vs. MM-RAG (b).

The multimodal architecture introduces vision encoders and cross-modal alignment layers to
preserve visual semantics alongside textual information.
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These information losses propagate through the entire pipeline. During retrieval, semantically
relevant contexts may be missed because OCR-converted text fails to capture the meaning
embedded in visual layout or graphical relationships. During generation, models produce
hallucinations when attempting to reconstruct information from incomplete textual proxies of
visual content. The result is factually incorrect outputs or responses that contradict the original
document's meaning. MM-RAG addresses these limitations by processing text, images, and
other modalities within unified or aligned representations (Y. Li et al., 2025; Wasserman et al.,
2025). Rather than converting visual content to text, MM-RAG systems encode images directly
using vision transformers or multimodal encoders, then align these representations with textual
embeddings for joint retrieval and generation. This approach preserves spatial relationships,
visual hierarchies, and graphical semantics that OCR-based pipelines inevitably lose.

2.3 Related Surveys and Positioning of This Study

Several recent surveys provide complementary perspectives on RAG systems and multimodal
learning. Gupta et al. (2024) trace RAG's evolution from foundational retrieval methods to
enterprise-scale deployments, documenting architectural choices across 150+ systems but
focusing primarily on text-based applications. Yu et al. (2025) establish unified evaluation
frameworks specifically for retrieval-augmented generation, addressing benchmark
fragmentation but not multimodal-specific challenges. Tonmoy et al. (2024) comprehensively
survey hallucination mitigation techniques in large language models, covering both parametric
and retrieval-based approaches, while Wasserman et al. (2025) introduce benchmarks for real-
world multimodal retrieval scenarios.

Within the multimodal domain, foundational work has established key technical paradigms.
Self-RAG (Asai et al., 2024) introduced dual-verification mechanisms for retrieval-generation
alignment, demonstrating that models can learn to assess relevance and faithfulness through
self-reflection. MuRAG (W. Chen et al., 2022) pioneered multimodal memory integration for
open-domain question answering, showing that external visual-textual memory significantly
improves performance on questions requiring visual reasoning. Es et al. (2024) developed
reference-free automated evaluation frameworks that enable scalable assessment of RAG
system quality without ground-truth labels. Recent studies on MM-RAG have explored diverse
architectural designs, retrieval strategies, and evaluation settings, making it difficult to directly
compare their objectives and empirical findings Table 1 categorizes representative studies,
revealing a diverse landscape of architectural objectives and findings.
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Table 1. Comparative Summary of the Objectives, Methods, and Findings of Key Studies in the
MM-RAG Literature

Author(s) & Objective of the o 1. Conclusion/
Year Study Methodology Key Findings Implications
1. Achieved high
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To compare vision-
based RAG
(ColPali) with

OCR-based RAG
(Llama 3.2) under
varying document
quality conditions.

To propose
CMRAG (Co-
Modality-Based
RAG), a framework
combining textual
and visual
modalities for
document retrieval.

To introduce
UniDoc-Bench, a
benchmark for
document-centric

MM-RAG, and to
compare different
retrieval strategies.

Experimental:
Introduced  the
DocDeg  dataset
containing
degraded and
noisy documents;
evaluated
retrieval accuracy
and semantic
answer quality.

Experimental:
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triplet dataset
(query, text,
image); evaluated
Unified Encoding
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and Unified
Cross-Modality
Retrieval
(UCMR).
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Construction ~ /
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pages of real-
world PDFs and
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Table 1 focuses on representative and influential studies rather than providing an exhaustive
list of all MM-RAG publications. As summarized in Table 1, existing MM-RAG studies differ
substantially in both their experimental setups and targeted modalities. While recent works
demonstrate clear gains from multimodal retrieval and fusion, they also reveal persistent
limitations related to document quality, unstructured visual content, and cross-modal alignment.
These observations motivate the architectural analysis presented in the next section

3. Architectural Paradigms in Multimodal RAG

This section systematically categorizes MM-RAG architectures through their fundamental
design choices: how visual content is encoded, how text and images are aligned, and how
retrieval granularity is determined. We trace the evolution from discrete OCR-based pipelines
to unified vision-language embeddings and late-interaction mechanisms, clarifying the trade-
offs between semantic fidelity, computational cost, and hallucination risk. Figure 2 illustrates
the overall end-to-end architecture of a representative MM-RAG pipeline. The framework
integrates modality-aware query processing, multi-stage retrieval, cross-modal fusion, and
post-generation verification to mitigate hallucination and improve grounding
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Rather than representing a single implementation, this figure abstracts common design patterns
observed across recent MM-RAG systems and highlights emerging components such as
adaptive context selection and post-generation verification.

3.1 OCR-Based Pipelines: Advantages, Limitations, and Modern Variants

OCR-based workflows represent the first generation of MM-RAG architectures. These systems
convert visual content to plain text using optical character recognition, then apply standard text
retrieval methods. This approach offers significant engineering advantages. It leverages mature
text indexing infrastructure that has been refined over decades. It requires no modification to
existing embedding models like BERT or sentence-transformers. It enables seamless
integration with legacy RAG systems deployed in production environments (Lee et al., 2024).
However, performance depends on OCR quality and document condition. Modern OCR with
large models (Llama 3.2 90B) achieves higher recall than vision embeddings on degraded
documents. The fundamental limitation of OCR-based approaches is information loss during
modality conversion (Faysse et al., 2024). Three critical information types disappear in the OCR
pipeline:

e Spatial Layout: A two-column financial table becomes a linear text sequence. Row-
column relationships dissolve. Header associations vanish. The semantic structure that
makes tabular data interpretable is flattened into an unstructured string.

e Visual Comparisons: A bar chart showing quarterly growth trends converts to isolated
numbers. The visual magnitude comparison that enables rapid pattern recognition is
lost. Readers cannot reconstruct trend direction or relative performance from
disaggregated values.

e Structural Hierarchies: Nested diagrams with parent-child relationships become
unordered text fragments. Flowcharts lose directional arrows. Organization charts lose
reporting structures. The compositional semantics encoded in visual layout cannot be
preserved in linearized text (Faysse et al., 2024).

These losses propagate through the entire MM-RAG pipeline. During retrieval, semantically
relevant contexts may be missed because OCR-converted text fails to capture meaning
embedded in visual layout. During generation, models produce hallucinations when attempting
to reconstruct information from incomplete textual proxies. A question about quarterly
performance in a bar chart may retrieve text mentioning specific numbers but lacking the
comparative context required to answer correctly. Despite these limitations, recent advances in
OCR and vision-language models partially mitigate degradation effects under noisy conditions.

e Modern OCR Variants Show Resilience: Recent studies reveal a counter-narrative to
the vision-first paradigm. Most et al. (2025) demonstrate that state-of-the-art OCR
pipelines utilizing large vision-language models (e.g., Llama 3.2 90B) exhibit greater
robustness on degraded or noisy documents compared to vision-based embeddings like
ColPali, achieving higher scores on retrieval metrics across all tested degradation levels.
While VLM-based systems offer superior computational efficiency and storage savings,
OCR approaches enhanced with large models show higher retrieval recall when
processing low-quality scans, faded text, or documents with complex backgrounds. This
suggests a fundamental trade-off: vision embeddings excel at preserving layout
semantics on high-quality documents, while robust OCR pipelines maintain text
extraction fidelity across varying document conditions.

e Hybrid Strategies: Practical systems often combine OCR with visual processing.
Methods like DePlot translate plots into structured tables, preserving quantitative
relationships while enabling text-based retrieval (Liu et al., 2022). Late-interaction
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retrieval models such as ColBERT apply multi-vector re-ranking to OCR output,
partially recovering fine-grained semantic distinctions lost during conversion (Khattab
& Zaharia, 2020). Despite these enhancements, OCR-based architectures remain
fundamentally limited by the irreversibility of information loss during the visual-to-text
transformation.

3.2 Dense Multimodal Embeddings: CLIP, SigLIP, and Cross-Modal Alignment

To overcome OCR limitations, unified multimodal embedding approaches process text and
images within aligned vector spaces. These architectures encode both modalities through
separate encoders—typically vision transformers for images and BERT-style transformers for
text—then align the resulting embeddings through contrastive learning (Radford et al., 2021).

Contrastive Language-Image Pre-training (CLIP): CLIP pioneered large-scale vision-language
alignment by training on 400 million image-text pairs scraped from the internet. The model
computes similarity matrices over mini-batches and applies contrastive loss to push matched
pairs closer while repelling mismatched pairs. CLIP's success demonstrated that web-scale
noisy supervision enables zero-shot transfer to diverse visual tasks without domain-specific
fine-tuning. However, CLIP's softmax-based contrastive loss requires global normalization
across the entire batch, creating computational bottlenecks that limit batch size scaling (Radford
et al., 2021)

Sigmoid Loss for Improved Scaling (SigLIP): SigLIP addresses CLIP's scalability constraints
by replacing contrastive softmax loss with pairwise sigmoid loss (X. Zhai et al., 2023). Unlike
CLIP, which normalizes over all negative examples in a batch, SigLIP treats each image-text
pair as an independent binary classification problem. This design enables efficient
parallelization across devices and supports larger batch sizes, improving performance
particularly at smaller scales where CLIP struggles. SigLLIP models trained with sigmoid loss
consistently outperform CLIP variants on zero-shot classification and image-text retrieval
benchmarks while requiring less computation per training step.

SigLIP 2: Enhanced Semantic Understanding: The recently released SigLIP 2 extends the
original architecture with three additional training objectives. A localization-aware decoder
adds spatial grounding capabilities. A global-local consistency loss improves fine-grained
patch-level semantics through self-distillation. A masked prediction loss enhances dense feature
quality for downstream tasks like segmentation and depth estimation. These enhancements
yield significant gains on visually rich document retrieval tasks. The NaFlex variant supports
dynamic resolution and aspect-ratio preservation, making SigL.IP 2 particularly effective for
OCR and document understanding applications where layout integrity matters (Tschannen et
al., 2025). However, SigLIP 2 shows lower retrieval performance than SigLIP on document
tasks (MRR: 0.42 vs 0.47) due to training objective mismatch (W. Chen et al., 2025).

Application to MM-RAG: Dense embeddings enable retrieval systems to match queries with
documents based on semantic similarity in joint text-image space. For document retrieval,
images of entire pages are embedded alongside their textual content. Query embeddings are
compared against this multimodal index using cosine similarity. However, single-vector
representations suffer from information compression. A page containing multiple tables, charts,
and text blocks must be summarized into a single 512 or 768-dimensional vector. This
compression loses fine-grained details, making it difficult to distinguish between documents
with similar global semantics but different specific content. Dense embeddings excel at coarse-
grained retrieval but struggle with precise localization (X. Chen et al., 2024; Grassucci et al.,
2025).
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3.3 Late-Interaction Paradigms: ColPali and Multi-Vector Representations

Late-interaction retrieval mechanisms address the compression limitations of dense
embeddings by representing documents as multiple vectors—one per patch, token, or semantic
unit. Rather than collapsing the entire document into a single embedding, late-interaction
models preserve granular representations and defer similarity computation until query time.

Contextualized Late Interaction over BERT(ColBERT): ColBERT introduced the late-
interaction paradigm for text retrieval. Instead of encoding a document as a single vector,
ColBERT represents each document as a matrix where rows correspond to token embeddings.
Query tokens are similarly embedded. Similarity is computed via MaxSim: for each query
token, find the maximum cosine similarity with any document token, then sum across query
tokens. This operation approximates token-level matching while maintaining computational
efficiency through pre-computed document representations (Khattab & Zaharia, 2020).

ColPali: ColPali extends ColBERT's architecture to multimodal documents by leveraging
PaliGemma, a vision-language model that projects image patches into a language-aligned
space. ColPali treats each page as an image and divides it into a grid of patches. Each patch is
encoded through PaliGemma's vision transformer and projected into a 128-dimensional
embedding. Query tokens are similarly embedded. MaxSim-based late interaction computes
patch-level similarity, enabling fine-grained matching between query concepts and specific
visual regions. ColPali demonstrates state-of-the-art performance on the Visual Document
Retrieval Benchmark (ViDoRe), particularly on visually complex tasks involving infographics,
tables, and charts. It achieves an average nDCG@5 of 81.3 across ViDoRe tasks, significantly
outperforming text-based baselines (BM25: 65.5, BGE-M3: 66-67)(Faysse et al., 2024).
ColPali reduces OCR errors on high-quality documents. However, OCR-based systems
outperform it on degraded inputs (Most et al., 2025). Hybrid approaches are common in
practice. It has reduced certain error classes caused by OCR in experiments. However, hybrid
solutions may still be used in practical deployments depending on data quality and application
requirements. The model is end-to-end trainable and drastically simpler than traditional
pipelines requiring document parsing, chunking, and OCR (Faysse et al., 2024).

Interpretability Through Similarity Maps: A unique advantage of late-interaction architectures
1s interpretability. ColPali can visualize which image patches contribute most to a query match.
For a query about "hourly trends," similarity maps highlight not only text mentioning "hourly"
but also chart x-axes representing time, demonstrating genuine visual comprehension rather
than OCR-based text matching. This interpretability supports debugging and trust in retrieval
decisions, particularly in high-stakes domains like medical imaging or financial analysis.

Computational Trade-offs: Late-interaction models require storing multiple vectors per
document, increasing index size proportionally to the number of patches or tokens. A page with
256 patches and 128-dimensional embeddings consumes 32KB per page compared to 512 bytes
for a single-vector embedding. Efficient implementations leverage approximate nearest
neighbor search (e.g., FAISS with product quantization) and early termination strategies to
maintain sub-second query latency even on billion-scale corpora. However, storage and
indexing costs remain substantially higher than dense embeddings (Faysse et al., 2024; Saad-
Falcon et al., 2024).

3.4 Retrieval Granularity: From Short Chunks to Long-Context Units

Beyond modality representation, MM-RAG architectures differ fundamentally in retrieval
granularity. Traditional RAG systems chunk documents into short units (100-300 words) to fit
within retriever and reader context windows. This design imposes a "heavy retriever, light
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reader" paradigm where retrievers search over millions of short fragments, and readers generate
from a few concatenated chunks.

Limitations of Short-Chunk Retrieval: Short chunking fragments semantic context. A
financial table split across chunks loses row-column relationships. A multi-paragraph
argument divided into separate chunks loses logical flow. This fragmentation introduces
two failure modes. First, hard negatives become more likely. A chunk mentioning
relevant keywords but lacking necessary context may rank highly yet mislead
generation. Second, context incompleteness forces readers to infer missing information,
increasing hallucination risk (Z. Jiang et al., 2024).

Long Retrieval Units (LongRAG): LongRAG proposes inverting the traditional design
by retrieving entire documents or large coherent units (4K+ tokens) and delegating
understanding to long-context language models (Z. Jiang et al., 2024). For Wikipedia-
based QA, LongRAG groups related articles into 4K-token units through hyperlink
structure, reducing the corpus from 22 million short paragraphs to 700K long units. This
30x reduction in corpus size dramatically improves retrieval precision: answer recall@ 1
increases from 52% to 71% on Natural Questions without any model training. The long
reader (e.g., GPT-4, Claude) processes concatenated retrieval units (approximately 30K
tokens) in a single forward pass, leveraging its capacity to maintain coherence over
extended context.

Granularity as an Architectural Choice: Retrieval granularity interacts with both
modality encoding and model capacity. OCR-based systems benefit less from long units
because spatial layout is already lost; chunking merely reduces text volume without
introducing additional semantic fragmentation. Vision-based late-interaction models
like ColPali naturally align with page-level granularity, where each page is a single
retrieval unit. Dense embeddings face a tension: longer units provide more context but
compress more information into fixed-size vectors, potentially degrading match
precision. Adaptive granularity strategies—dynamically selecting chunk size based on
document structure and query complexity—represent an active research frontier (Z.
Jiang et al., 2024; Saad-Falcon et al., 2024).

3.5 Comparative Analysis: Trade-offs Across Paradigms

Table 2 synthesizes the architectural trade-offs discussed in this section. It compares OCR-
based, dense multimodal, and late-interaction paradigms across multiple dimensions: visual
data processing, spatial information preservation, retrieval mechanism, representation
granularity, storage costs, and retrieval precision on structured documents.
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Table 2. Comparative Analysis of MM-RAG Architectures: From OCR-Based Baselines to Late

Interaction Paradigms

Aspect Naive RAG (OCR- Dense MM-RAG ColPali (Late Interaction
P Based) (CLIP-style) MM-RAG)
. Visual content Visual content Visual content encoded as
Visual Data . . . . .
Processin converted into plain encoded into a single multiple patch-level
& text via OCR global embedding embeddings
Preservation of Lost due to Partially preserved Largely preserved via

Spatial Information

Retrieval

linearization of visual
structures

Text matching using

through global visual
semantics

Cosine similarity over

layout-aware multi-vector
representations

MaxSim-based late

Mechanism sparse  (BM25) or single-vector interaction between query
dense retrieval embeddings tokens and visual patches
Representation Coarse, text-only Medium, global Fine-grained, token—patch
Granularity segments visual-text alignment  and layout-level alignment
Storage and Low Moderate High due to multi-vector

Indexing Cost

Retrieval Precision

Limited, sensitive to

Improved but prone to

indexing

High, particularly effective

on Structured information for tables, figures, and
OCR errors .
Documents compression page layouts
Representative of recent
Current Status in the Traditional; Stl.ll Wldgly adopted. in §tate-of-the-art approaches
Literature necessary in multimodal retrieval in document-level MM-
constrained pipelines systems RAG research (2024
2025).

Rather than presenting these paradigms as interchangeable alternatives, the following
comparison highlights the concrete trade-offs they impose across retrieval precision, storage
cost, and latency, thereby framing architectural choice as an explicit design decision rather than
a purely empirical preference

Key Insights: First, OCR-based pipelines remain competitive in low-quality document settings
despite semantic limitations. When documents contain degraded scans or handwritten text,
robust OCR with large vision-language models (e.g., Llama 3.2 90B) outperforms vision-first
embeddings (Most et al., 2025). Second, unified multimodal embeddings consistently
outperform text-only baselines on visually grounded tasks but suffer from compression
bottlenecks that limit fine-grained matching. Third, late-interaction architectures demonstrate
superior performance on structured documents by preserving layout and enabling patch-level
reasoning. However, no single architecture dominates across all scenarios. Optimal design
depends on document characteristics (quality, layout complexity), query distribution (keyword-
based vs. conceptual), and operational constraints (latency, storage budget). Hybrid approaches
that adaptively select architectures based on input properties represent a promising direction for
future study.
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4. Hallucination Mechanisms in Multimodal RAG

Hallucination in large language models refers to outputs that appear fluent and plausible yet
contradict provided context or established facts (Ji et al., 2023). In MM-RAG systems, this
problem exhibits a more complex structure because errors can originate not only from
generation but also from retrieval, representation, and cross-modal alignment stages. This
section analyzes why multimodal architectures amplify hallucination risks, establishes a
granular taxonomy of error types, and traces how architectural choices create distinct
hallucination patterns.

4.1 Why MM-RAG Amplifies Hallucination Beyond Text-Only Systems

MM-RAG introduces three compounding factors absent in text-only systems that
fundamentally increase hallucination risk. Cross-Modal Misalignment During Retrieval: Text-
based RAG retrieves semantically similar passages. Relevance is defined within a single
modality using cosine similarity over text embeddings. MM-RAG must assess relevance across
heterogeneous representations. A query about "quarterly revenue growth" may retrieve a
document containing relevant keywords but irrelevant charts. The textual context mentions
"growth," yet the chart shows decline. When the generator receives both text and image
embeddings without verifying their semantic coherence, it may synthesize claims that conflict
with the visual evidence. This cross-modal mismatch creates hallucinations rooted in
incomplete or contradictory multimodal context.

e Retrieval-Specific Information Loss: Beyond the modality conversion losses discussed
in Section 3.1, MM-RAG faces unique retrieval-stage failures. Dense multimodal
embeddings compress entire pages into fixed-size vectors, losing fine-grained spatial
relationships. A financial table showing quarterly performance may be indexed as a
single 768-dimensional embedding. When retrieved, the generator cannot distinguish
which specific row or column supports a claim, increasing fabrication risk. Late-
interaction models mitigate but do not eliminate this problem. While patch-level
embeddings preserve layout, retrieval still operates on aggregated MaxSim scores. A
page with ten charts may be retrieved based on global similarity, yet only two charts are
relevant to the query. The generator must infer which visual elements matter, often
incorrectly.

e C(Cascading Error Propagation: Text-only RAG exhibits linear error propagation:
incorrect retrieval leads to incorrect generation. MM-RAG exhibits cascading errors
across modalities. Suppose OCR misreads a table value (e.g., "8.5%" as "85%"). The
retriever correctly identifies the page as relevant. The generator, trusting the retrieved
context, produces a response claiming "85% growth." The error originates in OCR but
manifests as a generation hallucination. Unlike text typos, which readers often
recognize, numerical errors from OCR appear internally consistent. The model has no
signal indicating corruption. This cascading failure mode demonstrates how upstream
modality-specific errors amplify downstream generation risks (Faysse et al., 2024; Most
et al., 2025)

e New findings reveal additional nuances Chen et al. (2025) demonstrate that omission
hallucinations (failing to describe present objects) and fabrication hallucinations
(describing absent objects) stem from distinct mechanisms. Omissions arise from low-
confidence visual encodings even when objects are correctly perceived. Fabrications
result from overreliance on linguistic priors. Standard contrastive decoding methods
reduce fabrications but exacerbate omissions, highlighting the need for mechanism-
specific interventions.
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4.2 A Granular Taxonomy: Factuality, Faithfulness, and Visual Error Types

Recent surveys establish two foundational hallucination categories applicable across LLMs and
multimodal systems (B. Chen et al., 2025; Huang et al., 2024). We distinguish errors that
contradict external facts (factuality) from those that contradict the provided input (faithfulness),
because mitigation strategies differ between them:

e Factuality Hallucinations: contradict established real-world facts. These errors manifest
when a model generates content inconsistent with verifiable external knowledge.
Example: "The Great Wall of China is visible from space with the naked eye"
contradicts documented scientific evidence. In MM-RAG, factuality hallucinations
often arise from parametric knowledge stored during pretraining rather than retrieved
evidence. A model may override retrieved context with incorrect memorized facts,
especially when retrieval confidence is low.

e Faithfulness Hallucinations: diverge from provided input context or user instructions.
These errors represent internal inconsistencies rather than factual inaccuracies. Three
subtypes exist: *instruction inconsistency* (failing to follow user directives), *context
inconsistency® (contradicting retrieved documents), and *logical inconsistency*
(internal contradictions within generated output). In MM-RAG, context inconsistency
is particularly critical. A generator produces faithfulness hallucinations when it
fabricates claims unsupported by retrieved text or images, even if the claims are
factually plausible.

While this binary taxonomy applies broadly, visual tasks require finer granularity. Bai et al.
(2024) categorize multimodal hallucinations (MMHal) into three visual-specific types:

1. Object Category Hallucinations: The model identifies nonexistent objects or misclassifies
existing ones. Example: detecting a "cat" where none exists or labeling a "bus" as a "truck."
These errors reflect failures in basic visual perception or overconfident predictions driven by
linguistic priors. POPE benchmark specifically measures object-level hallucinations through
binary existence questions (Y. Li et al., 2023).

2. Attribute Hallucinations: The model correctly identifies an object but misrepresents its visual
properties such as color, shape, size, material, or count. Example: describing a "red car" as
"blue," or claiming "three people" when five are present. Attribute errors often result from
insufficient visual grounding. The model recognizes a car's presence but hallucinates properties
based on statistical priors rather than visual evidence.

3. Relation Hallucinations: The model accurately describes individual objects and their
attributes but fails to capture spatial or semantic relationships. Example: stating "a person is
holding a cup" when the cup is on the table, or describing "a dog next to a tree" when the dog
is behind the tree. Relation hallucinations are particularly challenging because they require
compositional reasoning across multiple visual elements. Recent benchmarks like Reefknot
specifically target relation errors, distinguishing perceptive failures (incorrect spatial
understanding) from cognitive failures (incorrect inferential reasoning) (B. Chen et al., 2025).

This visual taxonomy is orthogonal to the factuality-faithfulness distinction. An object
hallucination may be faithfulness-violating (describing an object absent from the image) or
factuality-violating (describing an object type that does not exist in reality). Similarly, an
attribute error may faithfully reflect the image but contradict world knowledge (e.g., describing
a "blue banana" accurately shown in a doctored image).
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4.3 Impact of Architectural Choices on Hallucination Patterns

Different MM-RAG architectures exhibit distinct hallucination profiles. Understanding these
dependencies enables targeted mitigation strategies.

OCR-Based Pipelines: OCR-based systems primarily suffer from information loss during
modality conversion (Section 3.1). However, their hallucination patterns extend beyond mere
omissions. Numerical errors can occur when decimal points or digits are misread, particularly
in degraded or noisy documents. Financial and medical applications are particularly vulnerable.
A misread lab result or stock price propagates through retrieval and generation without
correction. Structural errors occur when spatial layout information is lost. A two-column
comparison table becomes a flat text sequence. The model cannot infer which values compare
to which, leading to incorrect relationship claims. Recent study demonstrates that state-of-the-
art OCR pipelines utilizing large vision-language models (e.g., Llama 3.2 90B) exhibit greater
robustness on degraded or noisy documents compared to vision-based embeddings, achieving
higher semantic answer quality when document quality is poor (Most et al., 2025). This
suggests a trade-off: VLM-based systems excel on clean documents with complex layouts,
while robust OCR approaches maintain reliability across varying document conditions

Dense Multimodal Embeddings: CLIP-style dense embeddings (Section 3.2) compress entire
pages into single vectors. This compression creates attribute and relation hallucinations. A page
with multiple objects may be retrieved based on global semantic similarity, yet the generator
lacks fine-grained spatial information to verify relationships. Experiments show that dense
retrievers excel at coarse-grained tasks (e.g., "find documents about quarterly earnings") but
struggle with specific claims (e.g., "verify the exact percentage in the Q2 bar chart"). The model
retrieves relevant documents but generates attribute details from parametric knowledge rather
than visual evidence (X. Chen et al., 2024).

Late-Interaction Models: ColPali and similar late-interaction architectures (Section 3.3)
dramatically reduce object category hallucinations. Patch-level embeddings enable precise
localization. The model can verify whether an object exists in a specific image region, reducing
false positives in POPE benchmarks by 15-20% compared to dense embeddings (Faysse et al.,
2024). However, late-interaction models still struggle with relation hallucinations. MaxSim
scoring identifies relevant patches but does not model inter-patch relationships. A query about
"spatial arrangement" may retrieve patches showing individual objects but fail to encode their
relative positions. Recent study on scene graph representations addresses this limitation by
explicitly modeling object relationships, but integration into scalable RAG systems remains an
open challenge (X. Chen et al., 2024).

Granularity Effects: LongRAG's long retrieval units (Section 3.4) reduce hard negative
retrievals, indirectly mitigating faithfulness hallucinations. When retrieval units preserve full
document context, generators receive coherent semantic structures rather than fragmented
chunks. Experiments show that retrieval precision and answer accuracy improve when moving
from short 300-word chunks to long 4K-token units, with Exact Match scores increasing from
42% to 59% when using grouped documents (Z. Jiang et al., 2024). However, long contexts
introduce a different risk: saliency bias. Generators may attend disproportionately to early
content, ignoring critical visual elements appearing later in long documents. This attention
allocation failure creates omission hallucinations, where present information is overlooked
rather than fabricated.
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4.4 Emerging Insights: Omission vs. Fabrication Mechanisms

Recent empirical studies challenge the assumption that all hallucinations share a common
cause. Traditional mitigation strategies apply uniform interventions, yet results show
asymmetric effects. Contrastive decoding reduces fabrications (describing absent objects) but
increases omissions (failing to describe present objects). This divergence suggests distinct
underlying mechanisms (B. Chen et al., 2025).

Fabrication Hallucinations: stem from overreliance on linguistic priors. Pre-trained language
models encode statistical regularities ("bananas are yellow," "dogs chase cats"). When visual
evidence is weak or ambiguous, these priors dominate generation. Contrastive decoding
suppresses outputs driven by text-only distributions, effectively reducing fabrications.
However, aggressive suppression also penalizes correct but statistically common descriptions.

Omission Hallucinations: arise from low-confidence visual encodings. Even when vision
encoders correctly perceive an object, the cross-modal projection layer may assign low
probability to the corresponding linguistic token. During generation, the model filters low-
confidence predictions, causing omissions. This mechanism explains why increasing model
scale alone does not eliminate hallucinations. Larger models amplify both correct and incorrect
priors, improving fabrication rates but not addressing confidence calibration failures.

These insights motivate mechanism-specific interventions. Fabrications require visual
grounding and contrastive decoding (Section 5.3). Omissions require confidence calibration
and visual-linguistic alignment refinement (Section 5.4). Unified mitigation strategies that
ignore mechanistic differences achieve suboptimal performance across both error types.

The taxonomy introduced above distinguishes hallucinations not only by their observable form
(object, attribute, relation) but also by their underlying mechanism (fabrication versus
omission). These distinctions are critical, as different mitigation strategies intervene at different
stages of the MM-RAG pipeline and therefore target different error mechanisms. Accordingly,
the following section organizes mitigation approaches in relation to the specific failure modes
they are designed to address

5. Mitigation Strategies for Hallucination Reduction

The hallucination mechanisms analyzed in Section 4 reveal that errors originate at multiple
pipeline stages and across modalities. Effective mitigation therefore requires targeted
interventions calibrated to specific failure modes. This section surveys four complementary
strategies: self-verification through Chain-of-Verification, adaptive retrieval with Self-RAG,
visual grounding techniques, and confidence calibration mechanisms. We conclude with a
comparative analysis clarifying when each approach applies and how they compose in
production systems. Importantly, while this strategies is effective at reducing fabrication-type
hallucinations, it introduces non-trivial latency overheads and may exacerbate omission errors,
underscoring the need to evaluate mitigation techniques as trade-offs rather than universally
beneficial add-ons.

5.1 Chain-of-Verification: Iterative Self-Correction

Chain-of-Verification (CoVe) introduces a four-stage process where models generate, verify,
and revise their outputs before presenting final responses (Dhuliawala et al., 2024). The
workflow proceeds as follows.

e Draft Generation: The model produces an initial response to the query without external
verification. This baseline response may contain hallucinations due to parametric
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knowledge gaps or retrieval failures. Verification Planning: The model generates a set
of verification questions designed to test factual claims in the draft. For example, if the
draft states "The Mexican-American War occurred from 1846 to 1848," a verification
question might ask "When did the Mexican-American War start and end?" Crucially,
these questions are not templated. The model formulates them autonomously, enabling
coverage of diverse claim types.

e Independent Execution:Verification questions are answered independently, without
conditioning on the original draft. This prevents the model from simply parroting the
initial response. The independent execution breaks confirmation bias, forcing the model
to re-derive facts from parametric knowledge or retrieved evidence.

e Revised ResponseThe model compares verification answers against draft claims,
identifies inconsistencies, and generates a corrected final response.

Empirical results demonstrate CoVe's effectiveness across multiple tasks. On Wikidata list-
based questions, CoVe improves test precision from 0.17 to 0.36, reducing hallucinated entities
by 77% (from 2.95 to 0.68 negatives per response) while maintaining non-hallucination
coverage (Dhuliawala et al., 2024). On closed-book MultiSpanQA, CoVe increases F1 score
by 23% (from 0.39 to 0.48). For long-form biography generation, CoVe-enhanced Llama2
outperforms InstructGPT, ChatGPT, and PerplexityAl on FactScore metrics, demonstrating
that self-verification scales to complex generation tasks.

e Multimodal Extension: In MM-RAG contexts, CoVe can verify visual claims by
generating questions about image content. For instance, if a model describes "three
people standing near a car," CoVe generates verification questions like "How many
people are in the image?" and "What objects are present?" Answering these questions
independently with visual grounding prevents linguistic priors from overriding visual
evidence. However, CoVe's performance is bounded by the base model's reasoning
capacity. Verification questions are answered more accurately than the original query,
but complex multi-hop reasoning or rare factual knowledge remains challenging. CoVe
does not eliminate hallucinations completely, reducing them by approximately 40-60%
depending on task complexity. Errors in reasoning steps or factual gaps in parametric
knowledge persist despite verification loops.

5.2 Self-RAG: On-Demand Retrieval and Reflection Tokens

Traditional RAG systems retrieve a fixed number of passages for every query, regardless of
whether external knowledge improves response quality. This indiscriminate retrieval introduces
two failure modes. First, unnecessary retrieval adds latency and computational cost for queries
answerable from parametric knowledge. Second, irrelevant passages confuse generation,
degrading output quality even when the model could answer correctly without retrieval. Self-
RAG addresses these limitations through adaptive retrieval controlled by reflection tokens
(Asai et al., 2024). The framework trains a language model to generate special tokens that
trigger retrieval, assess passage relevance, and verify output factuality. The training process
involves three components. A critic model predicts when retrieval would improve generation.
A retriever supplies passages on-demand. A generator produces outputs interleaved with
reflection tokens that assess retrieval necessity, relevance, and support. During inference, the
model dynamically decides whether to retrieve, evaluates retrieved contexts, and generates
responses only when evidence supports claims.

Retrieve tokens indicate whether external knowledge would improve the response. The model
generates [Retrieve=Yes] when the query requires factual information absent from parametric
knowledge, and [Retrieve=No] when sufficient internal knowledge exists. Relevance tokens
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assess whether retrieved passages contain information pertinent to the query. The model scores
passages with [Relevant] or [Irrelevant] tags, filtering low-quality contexts before generation.
Support tokens verify whether generated claims are grounded in retrieved evidence. The model
assigns [Fully Supported], [Partially Supported], or [No Support] labels to each generated
segment, enabling segment-level attribution. Utility tokensevaluate overall response quality
considering both relevance and support. The model assigns [5], [4], [3], [2], or [1] utility scores,
facilitating beam search over candidate generations.

Experiments demonstrate Self-RAG's superiority across six tasks. On PubHealth fact-checking,
Self-RAG (7B parameters) achieves 72.4% accuracy, outperforming retrieval-augmented
ChatGPT (54.7%) and standard ChatGPT (70.1%), demonstrating that selective retrieval and
reflection tokens reduce hallucinations effectively. On long-form generation (Biography), Self-
RAG achieves a FactScore of 81.2, significantly outperforming the baseline of 55.9,
demonstrating that selective retrieval and reflection tokens reduce hallucinations without
sacrificing generation fluency (Asai et al., 2024).

Multimodal Adaptation: Self-RAG's reflection mechanism extends naturally to MM-RAG. The
model can generate [Retrieve-Image=Yes] tokens when visual evidence would clarify queries,
then assess whether retrieved images are [Relevant] to the question. Support tokens verify
whether generated descriptions are [Fully Supported] by visual content, preventing attribute
and relation hallucinations. Recent study demonstrates that multimodal reflection tokens reduce
CHAIR object hallucination scores by 18-22% on captioning benchmarks (W. Zhai, 2024).

5.3 Visual Grounding: Linking Claims to Image Regions

Visual grounding techniques reduce hallucinations by explicitly connecting textual claims to
specific image regions. Unlike CoVe and Self-RAG, which operate primarily through linguistic
reasoning, visual grounding enforces pixel-level accountability. The model must identify
bounding boxes, patches, or attention maps that support each generated claim. This constraint
prevents the model from fabricating visual details based solely on statistical priors.

Visual Description Grounding (VDGD): Ghosh et al. (2024) introduce VDGD, a training-free
method that grounds response generation in visual descriptions. The approach first generates
detailed descriptions of image content using a vision encoder. During text generation, the
language model's attention is biased toward tokens consistent with these visual descriptions.
This mechanism amplifies the influence of visual evidence over parametric linguistic priors.
VDGD improves accuracy by 2-33% across eight benchmarks requiring deliberate reasoning,
including MMMU (math understanding), MathVista (visual math), and AMBER (attribute
reasoning). Critically, VDGD operates at inference time without model retraining, making it
applicable to any pre-trained vision-language model.

Multi-Modal Mutual-Information Decoding (M3ID): Favero et al. (2024) demonstrate that as
text generation progresses, models increasingly rely on language priors rather than visual input.
This decaying visual reliance correlates strongly with hallucination emergence. M3ID
counteracts this drift by amplifying tokens with higher mutual information with the visual
prompt. The method computes token probabilities conditioned on the image, compares them to
text-only probabilities, and upweights visually grounded tokens during sampling. For LLaVA
13B, M3ID reduces hallucinated objects in captioning by 25% and improves POPE accuracy
by 21%. When paired with Direct Preference Optimization (DPO), improvements reach 28%
and 24% respectively. M3ID requires no training and adds minimal computational overhead,
operating through modified sampling at inference time.
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Limitations and Open Challenges: Visual grounding reduces object and attribute hallucinations
but shows limited effectiveness against relation errors. Identifying whether "a person is holding
a cup" versus "a cup is on the table" requires compositional reasoning across multiple regions,
which current grounding methods struggle to capture. Additionally, grounding techniques
assume high-quality vision encoders. When input images are blurred, occluded, or adversarially
perturbed, visual evidence itself becomes unreliable, degrading grounding effectiveness. Future
study must address these limitations through structured scene graph representations that
explicitly model inter-object relationships.

5.4 Adaptive Retrieval and Confidence Calibration

Adaptive retrieval mechanisms optimize when and what to retrieve, moving beyond naive
always-retrieve strategies. Two complementary dimensions govern effectiveness: retrieval
triggering (deciding if retrieval helps) and confidence calibration (assessing output reliability).

Self-Adaptive Multimodal RAG (SAM-RAG): W. Zhai (2024) introduces SAM-RAG, which
dynamically filters documents and verifies both evidence and generation quality in multimodal
contexts. The system implements three-stage adaptation. First, relevance screening evaluates
whether retrieved documents contain information useful for answering the query. The model
scores each document's alignment with the question, retaining only high-relevance contexts.
Second, evidence verification assesses whether the retained documents support factual claims
in the generated response. This step prevents hallucinations from emerging even when relevant
documents are retrieved. Third, output validation performs final checks on generation quality,
including factual consistency and answer completeness. Experiments show SAM-RAG
improves retrieval accuracy and response quality over fixed-retrieval baselines, particularly on
queries requiring multi-hop reasoning across text and images.

Adaptive-RAG: Query Complexity Routing: Jeong et al. (2024) propose training a classifier
that predicts query complexity and routes requests to different retrieval strategies. Simple
factual queries trigger single-step retrieval. Complex multi-hop questions activate iterative
retrieval loops. Queries answerable from parametric knowledge bypass retrieval entirely. This
adaptive routing reduces computational cost while maintaining accuracy. On open-domain QA
datasets, Adaptive-RAG improves efficiency by 30% and accuracy by 5-8% over always-
retrieve baselines.

Confidence Calibration: The Misalignment Problem: Confidence scores from retrieval and
generation stages often diverge, creating calibration failures (B. Chen et al., 2025). High
retriever confidence with low generator confidence signals modality mismatch or insufficient
context. The retriever successfully found relevant passages, but visual or spatial information
required for generation is missing. Conversely, low retriever confidence with high generator
confidence indicates over-reliance on parametric knowledge. The model generates confidently
despite weak evidence, increasing hallucination risk.

Calibration strategies address these divergences through two mechanisms. Separate calibration
per component:

e Retriever confidence is calibrated using ranking metrics (e.g., nDCG@]10 thresholds).
Generator confidence is calibrated using token-level logits or ensemble disagreement.
When both signals indicate high confidence, outputs are reliable. When signals conflict,
the system triggers verification or abstains from answering.

e (Cross-modal calibration: Multimodal systems require joint calibration across text and
vision pathways. Recent study introduces correlation-based decoding that dynamically
adjusts output logits based on visual-textual alignment scores (B. Chen et al., 2025).
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When visual evidence strongly supports a claim, generator confidence is upweighted.
When visual-text correlation is low, confidence is down weighted, preventing
hallucinations from weak cross-modal grounding.

5.5 Comparative Analysis: When to Apply Each Strategy

Table 3 synthesizes the effectiveness, latency cost, and application scenarios for each mitigation
strategy. No single method dominates across all contexts. Optimal deployment depends on
hallucination type, task requirements, and computational constraints.

Table 3. Comparative Analysis of Hallucination Mitigation Strategies

Object Attribute Relation Latency
Strategy Hallucination Hallucination Hallucination Cost Best Use Cases
High (3- Long-form generation and
CoVe High (40— Medium (30— Medium (25— 4Xg complex reasoning tasks
60%) 45%) 35%) . where correctness is more
inference) .
important than speed
. Knowledge-intensive QA
. Medium . .
SelfLRAG High (45— Low (15— Low (10— (1.5-2x and fact verification where
65%) 25%) 20%) Ny selective retrieval reduces
inference) .
noise
Visual Low (1.1- Image captionin
Grounding Medium (35— High (50— Low (10— 1 3x ’ visuil Q Ap tasksg where
(VDGD /- 50%) 70%) 15%) ir;ference) attribute accuracy is critical
M3ID) utcaceuracy
Adaptive Low (1.2- High-throughput
Retrieval Medium (30— Medium (30— Medium (20— 1 5% " applications requiring
(SAM- 45%) 45%) 30%) ir; ference) efficiency without
RAG) sacrificing accuracy
Production systems
Confidence Low (20— Low (20— Low (15— Negligible requiring uncertainty
Calibration 30%) 30%) 25%) (<1.05%) estimation and selective
abstention

Key Insights from Comparative Analysis:

1. Complementary Failure Modes: CoVe excels at detecting object hallucinations through
independent verification questions but provides limited benefit for attribute and relation errors,
which require visual rather than linguistic reasoning. Visual grounding methods conversely
reduce attribute hallucinations dramatically but struggle with objects and relations. Combining
CoVe with visual grounding yields synergistic improvements, reducing multiple error types
simultaneously.

2. Latency-Accuracy Trade-offs: CoVe imposes the highest latency cost due to multi-stage
generation (draft — verification questions — answers — revision). Production systems
requiring real-time responses cannot afford 3-4x inference overhead. Visual grounding
techniques like M3ID add minimal latency (<30% increase) while achieving substantial
hallucination reductions, making them suitable for latency-sensitive applications like
interactive visual QA or content moderation.
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3. Task-Dependent Effectiveness: Self-RAG's adaptive retrieval works best for knowledge-
intensive tasks where external evidence is critical. On tasks solvable from parametric
knowledge (e.g., "What is the capital of France?"), Self-RAG correctly abstains from retrieval,
reducing computational waste. Conversely, visual grounding provides no benefit for text-only
queries. Systems must select strategies based on input modality and query type.

4. Confidence Calibration as Meta-Strategy: Confidence calibration does not directly reduce
hallucinations but enables systems to recognize when other mitigation strategies should
activate. A low-confidence retrieval score triggers CoVe verification loops. A high visual-
textual correlation mismatch activates visual grounding. Confidence signals thus orchestrate
strategy selection, creating adaptive pipelines that apply mitigation only when necessary.

5. Composability and Synergies: Strategies can be composed for multiplicative gains. Self-
RAG + Visual Grounding reduces object hallucinations by 60-75%, exceeding either method
alone. CoVe + Confidence Calibration enables selective verification, applying expensive multi-
stage reasoning only to low-confidence outputs. These compositions highlight the importance
of modular design, where mitigation components operate independently and combine flexibly
based on task requirements.

Practical Deployment Recommendations: High-stakes domains (medical diagnosis, legal
analysis) should prioritize accuracy over latency, deploying CoVe + Visual Grounding +
Confidence Calibration. Consumer applications (chatbots, content generation) should optimize
for throughput, using Visual Grounding + Adaptive Retrieval. Research systems exploring new
architectures should implement all strategies modularly, enabling controlled ablation studies
that identify optimal combinations for specific tasks.

6. Evaluation Benchmarks and Methodologies

Evaluating MM-RAG systems requires measuring performance across multiple dimensions:
retrieval precision, generation quality, hallucination rates, and source attribution accuracy.
Unlike text-only generation, where BLEU or ROUGE scores provide rough quality estimates,
multimodal systems demand evaluation protocols that verify visual grounding, assess cross-
modal consistency, and detect fine-grained error types. This section surveys automated
evaluation frameworks, object-level benchmarks, comprehensive multi-dimensional
assessments, and community-driven standardization efforts.

6.1 Automated Evaluation Frameworks: ARES and LL.M-as-a-Judge

Traditional RAG evaluation relies on human annotations for queries, retrieved passages, and
generated responses. This approach is accurate but fundamentally unscalable. Annotating
thousands of system outputs requires months of human effort, creating bottlenecks that prevent
rapid iteration during model development. Automated evaluation frameworks address this
constraint by training language models to assess RAG component quality without extensive
human labeling.

Automated RAG Evaluation System (ARES) introduces a three-stage evaluation pipeline that
reduces human annotation requirements by two orders of magnitude (Saad-Falcon et al., 2024).
The framework evaluates RAG systems along three dimensions: context relevance (does the
retrieved passage contain information pertinent to the query?), answer faithfulness (is the
generated response grounded in retrieved evidence?), and answer relevance (does the response
address the user's question?).
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The ARES workflow operates as follows.

1-Synthetic Data Generation: Given an in-domain passage set, ARES generates synthetic
query-passage-answer triples using large language models. These triples form positive
examples where context is relevant, answers are faithful, and responses are on-topic. Negative
examples are created through contrastive sampling—pairing queries with irrelevant passages
or generating unfaithful answers that introduce facts absent from context.

2-Judge Training: Using synthetic triples, ARES fine-tunes lightweight language models (e.g.,
FLAN-T5 XXL) as classifiers for each evaluation dimension. The judges learn to score context

relevance, faithfulness, and relevance through supervised training on automatically generated
labels.

3-Prediction-Powered Inference (PPI): To mitigate errors from synthetic training, ARES
calibrates judge predictions using a small human-labeled validation set (150-300 examples).
PPI provides statistical confidence intervals around system rankings, enabling principled
comparison despite judge imperfections.

Experiments across eight knowledge-intensive tasks in KILT, SuperGLUE, and AIS
demonstrate ARES's effectiveness. ARES achieves Kendall's tau correlation of 0.82 with
human judgments on context relevance and 0.76 on answer relevance, significantly
outperforming few-shot GPT-3.5 baselines (tau 0.75 and 0.63 respectively) and a reference-
free evaluation framework for RAG systems (RAGAS ) (tau 0.78 and 0.71). Critically, ARES
maintains accuracy across domain shifts—transferring from one document collection to another
without retraining. This robustness makes ARES suitable for evaluating diverse MM-RAG
systems where target domains may differ from development environments (Saad-Falcon et al.,
2024).

LLM-as-a-Judge: Scalability and Calibration Challenges: Beyond ARES, the broader LLM-
as-a-Judge paradigm uses powerful models like GPT-4 to evaluate weaker models' outputs
according to specific criteria (L. Zheng et al., 2023). This approach enables scalable evaluation
but introduces systematic biases. LLMs exhibit position bias (preferring responses presented
first), length bias (favoring longer outputs regardless of quality), and self-enhancement bias
(rating their own outputs higher than alternatives). Recent work on judge calibration
demonstrates that combining multiple judge models through ensemble voting reduces bias
while maintaining correlation with human preferences (D. Li et al., 2025). For MM-RAG
evaluation, calibrated LLM judges provide practical alternatives to human annotation when
combined with ground-truth validation sets that anchor judgments to human standards.

6.2 Object-Level Hallucination Metrics: POPE and H-POPE

While automated frameworks assess overall system quality, detecting specific hallucination
types requires targeted benchmarks. POPE (Polling-based Object Probing Evaluation)
establishes a controlled framework for measuring object-level hallucinations through binary
yes/no questions (Y. Lietal., 2023).

POPE Methodology: The evaluation proceeds in three steps. First, ground-truth objects are
extracted from images either through human annotations (e.g., MSCOCO) or automatic
segmentation tools like SEEM. Second, negative sampling generates questions about
nonexistent objects under three difficulty settings.

Random sampling selects objects uniformly from the dataset vocabulary, testing whether
models default to "yes" responses. **Popular sampling** selects frequently occurring objects
(e.g., "chair," "table"), testing whether models hallucinate common objects based on statistical

41



Selahattin Barigs CELEBI, Ammar ASLAN

priors. Adversarial sampling selects objects semantically related to image content but not
actually present (e.g., asking "Is there a saddle?" when showing a horse without equipment),
testing whether models infer objects from contextual cues. Third, models are queried with both
positive questions (about present objects) and negative questions (about absent objects),
yielding accuracy, precision, recall, and F1 scores.

POPE's binary format enables precise measurement and high reproducibility. Evaluation
requires no complex parsing or subjective judgment. Models simply output 'yes' or 'no,' making
inter-system comparison straightforward. Experiments reveal stark differences across models.
Early vision-language models like LLaVA (v1) achieve only 50.13% accuracy on adversarial
POPE, indicating frequent object hallucinations. InstructBLIP improves to 65.46% accuracy
(F1:73.75%) through instruction tuning on visual grounding data. Recent models incorporating
contrastive decoding or visual attention mechanisms exceed 85% accuracy, demonstrating that
architecture improvements directly reduce object-level errors (Y. Li et al., 2023).

Hierarchical-POPE (H-POPE): Standard POPE tests only object presence at a single abstraction
level. H-POPE extends this methodology by introducing hierarchical probing across abstraction
levels: superordinate categories (e.g., "vehicle"), basic-level categories (e.g., "car"), and
subordinate categories (e.g., "sedan") (Pham & Schott, 2024). This granularity reveals where
hallucinations occur in the recognition hierarchy. Models may correctly identify coarse
categories ("Is there a vehicle?") yet hallucinate fine-grained distinctions ("Is it a sedan?" when
it is actually an SUV). H-POPE results show that hallucination rates increase monotonically
with specificity. Average accuracy drops from 88% at the superordinate level to 79% at basic
level to 68% at subordinate level, highlighting that attribute hallucinations (Section 4.2)
disproportionately affect fine-grained recognition.

Limitations: POPE and H-POPE measure only object category hallucinations. They cannot
capture attribute errors (color, shape, count) or relation errors (spatial arrangements,
interactions). Questions like "Is the car red?" or "Is the person next to the car?" require different
evaluation protocols. Additionally, POPE focuses on object detection—verifying
presence/absence—rather than open-ended generation. Models may pass POPE yet hallucinate
extensively when generating free-form captions or answering complex visual questions (Bai et
al., 2024).

6.3 Comprehensive Multi-Dimensional Benchmarks: MMHal-Bench and Beyond

To evaluate hallucinations beyond object detection, comprehensive benchmarks assess multiple
error types through open-ended generation tasks.

MMHal-Bench: MMHal-Bench comprises 96 carefully curated image-question pairs across 12
object categories (Sun et al., 2024). Unlike POPE's binary questions, MMHal-Bench asks open-
ended queries requiring detailed visual reasoning: "Describe the spatial arrangement of objects
in this scene," "What activity is the person performing?", "Count the number of red items."
Responses are evaluated using GPT-4 as a judge, which rates answers on a zero-to-six scale
based on factual accuracy and visual grounding. The hallucination rate is computed as the
proportion of responses scoring below three.

MMHal-Bench prioritizes diversity over dataset size. The 96 examples are specifically designed
to probe known failure modes: attribute errors (color, material), relation errors (spatial
positions, interactions), counting errors (numerosity), and reasoning errors (inferring activities
or intentions). The results reveal significant hallucination rates in vision-language models on
MMHal-Bench. Hallucination rates vary in open-source models such as LLaVA (Sun et al.,
2024). Critically, MMHal-Bench correlates strongly (r=0.78) with human evaluations of
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hallucination severity, validating GPT-4's effectiveness as a judge for this benchmark (Sun et
al., 2024).

Caption Hallucination in Image Captioning (CHAIR) measures object hallucinations in
generated captions by comparing mentioned objects against ground-truth annotations
(Rohrbach et al., 2018). Two metrics quantify errors. CHAIR I (instance-level) measures the
proportion of hallucinated objects per caption: CHAIR I = (hallucinated objects) / (mentioned
objects). CHAIR S (sentence-level) measures the proportion of captions containing at least one
hallucination. CHAIR remains widely used for image captioning evaluation but shows high
variance across prompt templates and struggles with semantically equivalent phrasings (e.g.,
"automobile" vs. "car").

GAVIE and HALLUCINOGEN: Recent benchmarks extend beyond object and attribute errors.
GAVIE (Grounded Annotation for Video-based Image Evaluation) evaluates temporal
hallucinations in video understanding, testing whether models fabricate events or actions not
present in video sequences. HALLUCINOGEN introduces a systematic taxonomy covering six
hallucination types: object presence, attribute correctness, spatial relations, numerical accuracy,
inferential reasoning, and contextual coherence. By evaluating models across all six
dimensions, HALLUCINOGEN reveals that mitigation strategies effective for one error type
often fail on others, reinforcing the need for mechanism-specific interventions discussed in
Section 5.5.

6.4 Community Standards and Shared Tasks: TREC RAG Track

Benchmark fragmentation hinders reproducible comparison across studies. Different papers use
different datasets, evaluation metrics, and experimental setups, making it difficult to assess true
progress. Community-driven shared tasks address this problem by establishing standardized
evaluation protocols, curated test collections, and official leaderboards.

TREC RAG Track: The TREC 2024 and 2025 RAG Track provides the first large-scale,
community-wide benchmark for end-to-end RAG system evaluation (Pradeep et al., 2025). The
track defines three complementary tasks over the MS MARCO V2.1 corpus (tens of millions
of web documents, hundreds of millions of text segments):

Retrieval (R) Task: Participants rank and retrieve the most relevant text segments for given
queries. Evaluation uses standard retrieval metrics (nDCG@10, MAP, recall@1000) to
measure segment-level relevance without generation.

Augmented Generation (AG) Task: Participants generate answers using a fixed set of top-k
segments provided by a baseline retrieval system. This isolates generation quality from retrieval
effectiveness, enabling focused evaluation of hallucination mitigation, source attribution, and
answer completeness.

RAG Task: Participants implement end-to-end systems with custom retrieval and generation
strategies. Outputs must map to MS MARCO segments for reproducibility. Evaluation
measures both retrieval precision and generation quality jointly.

The track introduces nugget-based evaluation, originally developed for TREC Question
Answering (Voorhees & Buckland, 2003) and adapted for RAG through the AutoNuggetizer
(Pradeep et al., 2024). Nuggets represent atomic information units that constitute complete
answers. Human assessors or LLMs identify nuggets in reference answers, then check whether
system outputs cover these nuggets. Metrics include **nugget recall** (proportion of reference
nuggets mentioned in system response) and **nugget precision** (proportion of system claims
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supported by retrieved evidence). This granular evaluation detects not only hallucinations
(unsupported claims) but also omissions (missing relevant facts).

Support Evaluation and LLM-Judge Calibration: TREC 2024 RAG Track conducted extensive
support evaluation comparing GPT-40 judgments against human annotations across 45
participant submissions (Thakur et al., 2025). Support measures whether generated claims are
grounded in cited passages. Results show strong correlation between automated LLM
judgments and manual assessments, with run-level Kendall's t of 0.783, though correlation
decreases to 0.324 at topic-run level (Pradeep et al., 2024). While promising, this 44-56%
disagreement rate highlights persistent challenges in LLM judge reliability. Error analysis
reveals that LLMs struggle with nuanced inferential support (where claims require multi-hop
reasoning across passages) and domain-specific terminology (where technical terms may be
paraphrased differently). These findings motivate continued research on judge calibration and
hybrid human-LLM evaluation workflows.

Ragnardk Framework: To support TREC RAG Track participation, the Ragnardk framework
provides an open-source implementation of end-to-end RAG pipelines (Pradeep et al., 2025).
Ragnardk standardizes input/output formats, integrates retrieval systems (BM25, dense
retrievers, late-interaction models), and interfaces with generation backends (GPT-4o,
Command R+, LLaMA 3.1). The framework includes a web-based arena for crowdsourced
pairwise system comparison, enabling community evaluation beyond official track
submissions. Ragnardk's release accelerates reproducibility by providing reference
implementations and documented baselines that future study can build upon.

6.5 Dynamic Benchmarking and Data Contamination Mitigation

A critical challenge in RAG evaluation is data contamination: test queries or answers may exist
within LLM training corpora, inflating performance without genuine retrieval (Sainz et al.,
2023). If a model memorizes "What is the capital of France?" during pretraining, it can answer
correctly without accessing retrieved evidence. This false positive undermines RAG evaluation,
making systems appear effective when they simply regurgitate memorized facts.

Time-Stamped Datasets: Dynamic benchmarks mitigate contamination by incorporating
information published after model training cutoffs. RGB (RAG Benchmark) includes questions
about events occurring months after GPT-4's knowledge cutoff, forcing models to rely on
retrieval (X. Zheng et al., 2025). Similarly, the TREC RAG Track refreshes query topics
annually, ensuring that each year's evaluation includes novel questions unlikely to appear in
training data. Results from RGB show that retrieval quality becomes the dominant factor for
time-sensitive queries—models with strong parametric knowledge but weak retrieval perform
worse than models with moderate parametric knowledge but strong retrieval.

Adversarial Filtering: J. Chen et al (2024) propose active contamination testing: deliberately
include queries from popular QA datasets (Natural Questions, TriviaQA) in test sets, then flag
systems that answer without retrieval. Models achieving suspiciously high accuracy on known-
contaminated queries are penalized or excluded from leaderboards. This strategy deters data
contamination by making it detectable and costly.

RAGAS: The RAGAS framework enables evaluation without ground-truth answers by
assessing three aspects automatically (Es et al., 2024). Faithfulness measures whether generated
claims are entailed by retrieved context, using natural language inference models to verify
grounding. Context precision measures whether retrieved passages are relevant to the query,
using similarity-based ranking. Answer relevance measures whether generated responses
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address the user's question, using semantic similarity between query and answer. RAGAS
correlates strongly with human judgments (Spearman p=0.71 for faithfulness, p=0.68 for
relevance) while requiring no manual annotation during evaluation. This reference-free
property makes RAGAS suitable for iterative development cycles where human labeling would
create bottlenecks. Advancing MM-RAG research requires not only architectural innovation
but also access to shared benchmarks, evaluation frameworks, and reproducible open-source
implementations. Table 4 compiles essential open-source benchmarks and frameworks
ensuring reproducibility in future research.

Table 4. Key open-source resources, benchmarks, and evaluation frameworks supporting
reproducible research in MM-RAG

. . L Community
Category  Resource Repository / Link  Description Adoption
Late-interaction visual
retrieval framework based 400+  GitHub
Vision ColPali github.com/illuin- on the PaliGemma stars; PyPI
Retrieval ~ Engine tech/colpali backbone. Supports token- package
level pooling and multi- available
vector indexing.
Vision ColPali https://glthub.corp/ Tutorlal .r}otebooks‘ for Ac‘Flvel‘y
. tonywu71/colpali- interpretability analysis and maintained
Retrieval ~ Cookbooks o L
cookbooks similarity map visualization. examples
huggingface.co/col
lections/vidore/vid Original document image Baseline
Benchmark ViDoRe V1 ore-benchmark- retrieval benchmark with benchmark in
667173198¢70alcO0 nine QA-style datasets. ColPali
fa4db00d
huggingface.co/col ?;;;g;lsed \;(1)
lections/vidore/vid Extended benchmark saturation. Offer
. ore-benchmark- introducing "blind" queries, '
Benchmark ViDoRe V2 - S a more
v2- multilingual support, and challenein
67ae03e3924¢85b  BEIR compatibility £ing
36e753b0 evaluation
standard.
. Large-scale enterprise .
huggingtace.co/col . Integrated into
Benchmark ViDoRe V3 lections/vidore/vid benchmqu le[h 26k pages, MTEB
3k queries, six languages,
ore-benchmark-v3 . leaderboard
and human-verified labels.
Reference-free RAG
. evaluation framework
Evaluation RAGAS glthub.gom/explod measuring faithfulness, 6.6k stars;
inggradients/ragas . EACL 2024
context  precision, and
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Automated RAG evaluation

github.com/stanfor sin svnthetic data
Evaluation ARES d- usmg - SY S NAACL 2024
generation and statistical
futuredata/ARES o .
confidence estimation.
github.com/lIm- Living survey repository
Surve MM-RAG lab- categorizing MM-RAG ACL 2025
y Survey Repo  org/Multimodal-  literature with continuous Findings
RAG-Survey updates.
Test subset from the
huggingface.co/dat DocVQA dataset (originally Common
Dataset DocVQA asets/vidore/docvq 12k+ images) adapted for .
. . baseline dataset
a_test subsampled visual retrieval
benchmarking
huggingface.co/dat Test subset from the .. .
: ; : . High  visual-
InfographicsV asets/vidore/infogr InfographicsVQA  dataset .
Dataset . . . semantic
QA aphicsvqga test su targeting complex visual— .
. difficulty
bsampled text reasoning.
hugeinefice.co/s Public leaderboard tracking
ViDoRe EEIMBIACC.COMBD i te-of-the-art visual Real-time
Platform aces/vidore/vidore . .
Leaderboard retrieval models across evaluation
-leaderboard
benchmarks.
Evaluation Open-source
/ Evaluation framework (Apache 2.0).
... .. RAGAS docs.ragas.io providing  metrics and Enterprise
Visualizati . N . .
on visualization integrations cloud options

available

As summarized in Table 5, recent progress in MM-RAG has been strongly enabled by the
emergence of standardized benchmarks, open evaluation toolkits, and publicly accessible
retrieval engines. Resources such as ViDoRe and RAGAS play a critical role in ensuring fair
comparison and reproducibility across studies, while leaderboards facilitate continuous tracking
of state-of-the-art performanc

7. Applications in High-Stakes Domains

The practical value of MM-RAG systems is measured not by laboratory benchmarks alone but
by their reliability in high-stakes domains where errors carry severe consequences. This section
examines three critical application areas—medical imaging, financial analysis, and legal
document processing—where hallucinations can lead to misdiagnoses, financial losses, or legal
liability. We analyze domain-specific challenges, architectural requirements, and empirical
results from recent deployments.

7.1 Why These Domains? Shared Requirements and Distinct Challenges

Medical, financial, and legal domains share three characteristics that amplify hallucination risks
while demanding exceptional accuracy. First, these domains require verifiable factual
grounding. Medical diagnoses must align with established clinical guidelines and imaging
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evidence. Financial analyses must reflect actual numerical data from reports and market
indicators. Legal conclusions must cite specific statutes, case precedents, and contractual
clauses. Parametric knowledge alone is insufficient—external evidence is mandatory. Second,
these domains process inherently multimodal documents. Medical records pair radiology
images with textual reports. Financial documents integrate balance sheets, trend charts, and
management commentary. Legal contracts contain both standardized text clauses and attached
exhibits including diagrams, floor plans, or financial schedules. Text-only RAG loses critical
information. Third, these domains exhibit zero-error tolerance. A hallucinated drug dosage
recommendation endangers patient safety (Kim et al., 2025). A fabricated earnings figure
triggers regulatory violations and shareholder lawsuits. A misinterpreted contract clause
exposes firms to litigation. Unlike consumer chatbots where occasional errors are annoying but
tolerable, high-stakes applications require architectural designs that prioritize precision over
fluency.

Despite shared requirements, each domain presents distinct technical challenges. Medical
imaging demands real-time processing of high-resolution scans (e.g., CT images at
512x512x%300 voxels) while maintaining diagnostic accuracy on rare pathologies with limited
training data. Financial analysis requires numerical reasoning across complex tables and time-
series charts, where OCR errors in decimal points or negative signs propagate catastrophically.
Legal document processing involves recursive clause retrieval through hierarchical document
structures, where missing a referenced definition or footnote invalidates entire contractual
interpretations. These domain-specific constraints motivate specialized MM-RAG architectures
beyond general-purpose systems.

7.2 Medical Imaging: Domain-Aware Retrieval and Visual Grounding

Medical MM-RAG (MMed-RAG), Xia et al. (2024) introduced MMed-RAG, a MM-RAG
system specifically designed for medical vision-language models. MMed-RAG systems face a
fundamental tension between generalization and specialization. General-purpose vision-
language models (e.g., GPT-4V, Gemini) perform well on natural images but struggle with
medical modalities where subtle visual cues determine diagnoses. A 2-millimeter lung nodule,
barely visible to untrained observers, may indicate early-stage cancer. General models trained
on web-scraped data lack exposure to such domain-specific patterns (Y. Li et al., 2023).

The framework addresses three critical failures in naive RAG applications to medicine.

e Cross-modal misalignment: When replacing input images with noisy corrupted
versions, naive RAG systems retrieve context based on the original image but generate
responses conditioned on the corrupted input. This produces confident hallucinations—
responses that appear plausible but contradict visual evidence. MMed-RAG mitigates
this through cross-modal consistency checks that verify retrieved evidence aligns with
actual input modalities.

e Retrieval interference: Incorrectly retrieved contexts sometimes degrade performance
even for queries the model could answer from parametric knowledge. MMed-RAG
employs adaptive context selection, filtering retrieved passages below relevance
thresholds rather than blindly injecting all results into generation.

e Domain shift: Medical imaging spans diverse modalities (radiology, pathology,
ophthalmology) with distinct visual characteristics. A retriever trained on chest X-rays
may fail on retinal scans. MMed-RAG implements domain-aware indexing that routes
queries to modality-specific retrievers, improving recall across specialized subfields.
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Experiments across five medical datasets (MIMIC-CXR, IU-Xray, Harvard-FairVLMed, PMC-
OA, PathVQA) demonstrate substantial gains. According to Xia et al. (2024), MMed-RAG
achieves an average improvement of 43.8% in factual accuracy across tasks, specifically
improving medical VQA accuracy by 18.5% and report generation metrics by 69.1% over
baseline. On radiology report generation, improvements reach 69.1% in BLEU score and 58.4%
in ROUGE-L, indicating both fluency and factual correctness gains. With preference tuning
(RAG-PT), the over-reliance rate dropped from 43.31% to 8.38%, directly addressing patient
safety concern (Xia et al., 2024).

Visual RAG: Standard Med-LVLMs process single images, limiting their ability to compare
findings across time series (e.g., tracking tumor growth) or correlate multiple imaging
modalities (e.g., X-ray + CT scan). Chu et al. (2025) introduce Visual RAG (V-RAGQG), enabling
models to retrieve and reason over multiple related images simultaneously. The approach fine-
tunes models on image-text tasks that require multi-image comprehension. Entity probing
evaluates whether specific medical entities (e.g., "pulmonary edema") are grounded in visual
evidence. V-RAG significantly improves entity probing performance (measured in F1 score)
on both frequent and rare entities compared to baselines, and downstream evaluation
demonstrates a 19% relative improvement in the RadGraph-F1 score (Chu et al., 2025). This
demonstrates that multi-image retrieval not only improves detection accuracy but also enhances
generation factuality.

Agentic Al and Multi-Agent Systems: Recent radiology applications explore multi-agent
architectures where specialized sub-models handle distinct reasoning steps. One agent performs
image segmentation to localize anatomical structures. Another agent retrieves relevant case
histories from electronic health records. A third agent synthesizes evidence and generates
diagnostic hypotheses. A supervisor agent adjudicates conflicting predictions. This division of
labor improves diagnostic accuracy by 8-15% over monolithic models while enabling fine-
grained error attribution. However, multi-agent systems require careful orchestration to avoid
compounding errors across stages. Evidence from 2024-2025 indicates these approaches remain
computationally expensive and lack comprehensive clinical validation, limiting near-term
deployment (Rabbani et al., 2025).

7.3 Financial Analysis: Chart-to-Markdown and Hybrid Retrieval

Financial documents present unique challenges for MM-RAG systems. Balance sheets contain
hundreds of numerical entries where a single OCR error (e.g., "8.5%" — "85%") invalidates
downstream analysis. Trend charts convey growth patterns that text descriptions cannot
adequately capture. Management commentary provides contextual narrative essential for
interpreting raw figures. Effective financial RAG must jointly process text, tables, and charts
while preserving numerical precision.

Chart-to-Markdown Conversion: Jiang et al. (2025) proposed a MM-RAG framework that
converts chart and table images into structured Markdown representations prior to indexing.
While the authors do not publish explicit numerical examples, they demonstrate that financial
tables (e.g., quarterly results) can be faithfully transformed into structured row—column formats,
preserving numerical relations and table semantic. This structured representation enables
precise retrieval. Queries like "What was Q2 revenue growth?" retrieve the exact table cell
rather than noisy text fragments. Experiments on proprietary financial datasets demonstrate
improvements in retrieval precision (Precision@]10 increases from 0.36 to 0.40) and generation
accuracy compared to OCR-based baselines (C. Jiang et al., 2025). The full multimodal strategy
effectively addresses the primary failure mode (OCR-induced numerical errors) in financial
applications.
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Hybrid Retrieval (Vector + Graph Databases): Financial analysis often requires multi-hop
reasoning. A query about "debt-to-equity ratio" requires retrieving balance sheet data (total
debt, shareholder equity), computing the ratio, then comparing against industry benchmarks.
Vector databases enable semantic search but lack structured reasoning. Jiang et al. (2025)
augment vector retrieval with graph databases that encode relationships between financial
concepts (e.g., "Revenue -> Operating Income -> Net Income"). Queries trigger both vector
similarity search and graph traversal. Retrieved contexts include semantically relevant passages
plus structurally related entities. This hybrid approach improves multi-hop question accuracy
by 23% on financial QA benchmarks.

FinRAGBench-V (Visual Citation Benchmark): Evaluating financial RAG systems requires not
only answer accuracy but also source attribution. Users must verify which specific chart or table
supports each claim. FinRAGBench-V introduces the first benchmark requiring visual
citations—generated responses must cite exact page regions (bounding boxes) supporting
claims (Zhao et al., 2025). Experiments reveal that multimodal retrievers outperform text-only
approaches on visual document retrieval tasks, with evaluation showing performance variations
across models on financial document benchmarks (Zhao et al., 2025). This benchmark
establishes a new standard for trustworthy financial RAG deployment.

Real-World Impact: Financial institutions have deployed RAG systems for extracting
structured information from complex documents, demonstrating substantial improvements in
analyst productivity and accuracy on domain-specific extraction tasks

7.4 Legal Document Processing: Recursive Retrieval and Clause Dependencies

Legal contracts exhibit hierarchical structures where clauses reference other clauses,
definitions, exhibits, and footnotes. Understanding a single clause may require recursively
retrieving and synthesizing information scattered across the document. Traditional flat retrieval
paradigms fail because they treat documents as unstructured text collections, ignoring internal
dependencies.

Multi-Graph Recursive Retrieval: Yang (2024) proposes a multi-agent system for legal RAG
that constructs multiple document graphs. A clause graph captures hierarchical structure (e.g.,
Section 5.2.3 is a child of Section 5.2). A definition graph links terms to their formal definitions.
A reference graph tracks cross-references (e.g., "as defined in Section 3.1"). Given a query,
agents traverse these graphs recursively. Retrieving Clause A may trigger retrieval of Definition
B, which references Exhibit C. The system terminates when no further linked nodes are relevant
or when recursive depth exceeds limits to prevent infinite loops. Experiments on commercial
contracts (500+ pages) show that recursive retrieval improves comprehension accuracy by 31%
compared to naive chunking strategies that sever clause dependencies.

Addleshaw Goddard: A major UK law firm deployed an optimized RAG system for commercial
contract analysis, achieving 95% accuracy compared to 74% for baseline LLMs (Addleshaw
Goddard LLP, 2024). Three optimizations drove performance gains. Optimized retrieval:
Category-aware chunking groups related clauses (e.g., all indemnification provisions) into
coherent units, improving retrieval relevance by ~20%. Keyword prompting: Instructions
directing LLMs to focus on domain-specific terms (e.g., "force majeure," "liquidated damages")
improved recall accuracy by ~16%. Follow-up prompting: After initial generation, a second
prompt asks the model to verify claims against retrieved evidence, reducing hallucinations by
9.2%. The system processes S00-page merger agreements in 12 minutes compared to 4-6 hours
for manual review, enabling lawyers to focus on strategic analysis rather than mechanical clause
identification (Addleshaw Goddard LLP, 2024).
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Multi-Round RAG for Comprehensive Analysis: Complex legal queries often require iterative
refinement. A lawyer asks "What are the termination provisions?" The system retrieves relevant
clauses but realizes some reference broader definitions of "material breach" defined elsewhere.
Multi-round RAG iteratively expands context by identifying undefined terms, retrieving their
definitions, then re-generating responses with complete information. Experiments show multi-
round approaches improve completeness (covering all relevant provisions) by 27% while
maintaining precision (avoiding irrelevant information) through dynamic stopping criteria that
terminate retrieval when additional rounds yield diminishing returns(“Application of RAG
Model Based on Retrieval Enhanced Generation Technique in Complex Query Processing,”
2024).

Hallucination Risks in Legal RAG: In a study(Magesh et al., 2025) three commercial legal RAG
systems were evaluated: Lexis+ Al and Ask Practical Law Al hallucinated in approximately
17% of queries (one in six responses), while Westlaw Al exhibited hallucinations in 33% of
responses (one in three). These findings highlight the need for continuous evaluation and human
oversight in legal Al applications.

7.5 Resources and Reproducibility

Community Platforms: Beyond individual tools, standardized platforms facilitate reproducible
comparisons. The TREC RAG Track (Section 6.4) provides shared evaluation protocols.
Hugging Face hosts 150+ domain-specific embedding models. GitHub repositories like RAG-
Anything (HKU, 2024) provide end-to-end pipelines integrating document parsing, multimodal
retrieval, and generation.

Reproducibility Checklist for Domain Applications:

1. Dataset Transparency: Specify training data sources, annotation procedures, and licensing
constraints

2. Evaluation Protocols: Report metrics on standardized benchmarks (POPE, MMHal-
Bench, domain-specific tasks)

3. Computational Requirements: Document GPU memory, inference latency, and indexing
costs

4. Error Analysis: Conduct domain-expert evaluations beyond automated metrics to identify
failure modes

5. Ethical Safeguards: Implement human-in-the-loop verification for high-stakes decisions

Adhering to these practices accelerates community progress while ensuring safe deployment in
critical domains.
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8. Conclusion

This survey systematically analyzed MM-RAG through the intersecting dimensions of
architectural design, hallucination mechanisms, mitigation strategies, evaluation protocols, and
high-stakes applications. Our synthesis reveals a field transitioning from exploratory research
toward systematic engineering, where architectural choices, error patterns, and evaluation
methodologies are increasingly well-understood. This concluding section distills key insights,
clarifies trade-offs, and charts future research directions that will shape the next generation of
MM-RAG systems.

8.1 Key Insights: What We Have Learned

Architectural Evolution Follows a Clear Trajectory. The progression from discrete OCR-based
pipelines to unified vision-language embeddings, and increasingly toward late-interaction and
agentic paradigms, reflects fundamental trade-offs between semantic fidelity, computational
cost, and hallucination risk. OCR-based systems prioritize engineering simplicity and
compatibility with legacy infrastructure but sacrifice spatial layout and structural semantics.
Dense multimodal embeddings (CLIP, SigLIP) enable cross-modal alignment but compress
information into fixed-size vectors, losing fine-grained details. Late-interaction models
(ColPali, ColBERT) preserve granularity through multi-vector representations but increase
storage and indexing costs. No single architecture dominates across all scenarios. Optimal
design depends on document characteristics, query distribution, and operational constraints.
This architectural diversity is not a weakness but a strength—it enables practitioners to select
or compose approaches matched to specific application requirements. Hallucination Is Inherent,
Not Eliminable, but Manageable. Probabilistic language models inherently produce outputs that
occasionally diverge from evidence. In multimodal contexts, this risk amplifies through cross-
modal misalignment, cascading error propagation, and retrieval-specific information loss.
However, hallucinations are not uniform. Object category errors stem from different
mechanisms than attribute errors, which differ from relation errors. Fabrications (describing
nonexistent content) arise from overreliance on linguistic priors, while omissions (failing to
describe present content) result from low-confidence visual encodings. This mechanistic
diversity demands tailored interventions. CoVe reduces object hallucinations through iterative
verification but provides limited benefit for attributes. Visual grounding techniques reduce
attribute errors but struggle with relations. Confidence calibration enables systems to recognize
uncertainty and abstain from answering rather than hallucinate. Production systems must
integrate multiple complementary strategies, creating layered defenses that address distinct
failure modes. The goal shifts from eliminating hallucinations to detecting, quantifying, and
controlling them within acceptable risk thresholds. Evaluation Has Matured but Remains
Fragmented. The field has progressed from anecdotal demonstrations to systematic,
reproducible assessment. POPE establishes binary object-level evaluation as a widely adopted
baseline. MMHal-Bench extends coverage to attributes, relations, and reasoning. TREC RAG
Track introduces community-wide standards with shared tasks and official leaderboards. ARES
and RAGAS automate evaluation through synthetic data generation and reference-free metrics,
enabling rapid iteration during development. However, fragmentation persists. Different
benchmarks measure different hallucination types. Medical, financial, and legal evaluations
remain incomparable due to domain-specific metrics and proprietary datasets. Dynamic
benchmarks mitigate data contamination but lack standardization across studies. Bridging these
evaluation silos requires unified protocols that assess retrieval precision, generation
faithfulness, source attribution accuracy, and domain-specific requirements within a single
framework. Standardization efforts like TREC RAG Track represent critical infrastructure
investments that accelerate progress by enabling fair comparisons. High-Stakes Applications
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Reveal Persistent Gaps. Medical imaging, financial analysis, and legal document processing
demonstrate MM-RAG's practical potential while exposing limitations. Domain-aware
retrievers (MMed-RAG, Visual RAG) improve performance over general-purpose models,
confirming that specialized architectures outperform one-size-fits-all approaches. MMed-RAG
improves factual accuracy by 18.5% over baseline Med-LVLMs on medical VQA tasks (Xia et
al., 2024). Chart-to-Markdown conversion improves answer correctness scores (evaluated via
RAGAS) by approximately 28% and retrieval precision by approximately 19% compared to
OCR-based baselines in financial contexts, addressing the primary failure mode where OCR
misreads decimal points or negative sign (C. Jiang et al., 2025). Multi-graph recursive retrieval
improves legal clause comprehension by 31% by preserving hierarchical dependencies that flat
retrieval ignores. However, hallucination risks require careful mitigation. Commercial legal
RAG tools fabricate citations in 17-33% of responses (Magesh et al., 2025). In medical
contexts, baseline systems without retrieval safeguards exhibit over-reliance rates of 43.31%,
where models incorrectly trust noisy retrieved evidence. Domain-aware RAG architectures like
MMed-RAG reduce this rate to 8.38% through adaptive context filtering and cross-modal
consistency checks (Xia et al., 2024). demonstrating that specialized architectures substantially
improve reliability. These failures underscore that achieving human-level reliability in high-
stakes domains requires not only better models but also architectural safeguards, human-in-the-
loop verification, and rigorous certification processes.

8.2 Future Directions: Toward the Next Generation

The convergence of architectural advances, foundation model scaling, and structured
knowledge integration points toward several transformative research directions that will define
the next generation of MM-RAG systems.

Agentic RAG: Traditional RAG operates as a passive retrieve-then-generate pipeline. Agentic
RAG transforms this into an autonomous problem-solving process where systems plan multi-
step workflows, dynamically select tools, and iteratively refine outputs based on feedback.
Multi-agent architectures distribute complex tasks across specialized sub-agents—one agent
performs retrieval, another verifies factuality, a third synthesizes evidence, and a supervisor
coordinate outputs. Recent study demonstrates that agentic systems improve accuracy by 8-
15% on complex reasoning tasks requiring multi-hop inference, though computational costs
increase proportionally. Critical research challenges include coordinating agent communication
without error compounding, designing stopping criteria that prevent infinite verification loops,
and developing evaluation benchmarks that measure agentic capabilities (planning quality, tool
selection accuracy, adaptive refinement) beyond traditional QA metrics. The shift toward
agentic paradigms represents not merely an incremental improvement but a fundamental
reconceptualization of RAG from reactive information retrieval to proactive knowledge
synthesis.

Hybrid Reasoning: Emerging frameworks distinguish between System 1 reasoning (fast,
intuitive, pattern-based) and System 2 reasoning (slow, deliberate, logic-based) in RAG
contexts (Liang et al., 2025). Simple factual queries trigger lightweight retrieval with single-
pass generation (System 1). Complex multi-hop questions activate iterative retrieval, chain-of-
thought reasoning, and verification loops (System 2). Adaptive routers predict query
complexity and allocate computational resources, accordingly, maximizing accuracy-efficiency
trade-offs. Preliminary results show that hybrid systems achieve 90-95% of full System 2
performance while reducing average latency by 40-60% through intelligent routing. Future
research must develop query complexity classifiers that generalize across domains, design
System 1-System 2 interfaces that enable graceful escalation when fast reasoning proves
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insufficient and establish test-time compute budgets that optimize resource allocation
dynamically based on task requirements and user preferences.

Graph-Enhanced Multimodal RAG (GEAR): Knowledge graphs provide structured
representations of entities and relationships, complementing neural retrieval's semantic
flexibility with symbolic reasoning's logical consistency. GEAR systems index documents as
graph nodes, with edges representing citations, temporal sequences, or semantic relations.
Queries trigger both vector similarity search (retrieving semantically similar nodes) and graph
traversal (following explicit relationships). This hybrid approach improves multi-hop reasoning
by 23-31% compared to vector-only retrieval while reducing hallucinations through structured
knowledge constraints. Challenges include constructing high-quality domain-specific
knowledge graphs without prohibitive manual annotation, maintaining graph consistency as
new documents arrive, and designing joint embedding spaces where neural and symbolic
representations interact seamlessly. Graph-enhanced RAG represents a promising direction for
domains requiring verifiable reasoning chains, such as legal precedent analysis, scientific
literature review, and medical differential diagnosis.

Privacy-Preserving and Federated MM-RAG: High-stakes domains demand data sovereignty.
Medical records and financial documents cannot be routed through cloud-based retrieval
services without violating privacy regulations (GDPR, HIPAA). Federated RAG architectures
enable on-device or on-premises retrieval where data never leaves secure environments.
Queries are processed locally against partitioned indices, with only aggregated results (not raw
documents) transmitted to generation servers. Differential privacy techniques add calibrated
noise to queries and retrieved contexts, providing mathematical privacy guarantees while
degrading generation quality minimally (typically 5-10% accuracy loss). Technical challenges
include maintaining retrieval precision with locally partitioned indices that lack global corpus
statistics, balancing privacy budgets against downstream task performance, and developing
secure multi-party computation protocols that enable collaborative retrieval without exposing
sensitive data. As regulatory scrutiny intensifies, privacy-preserving RAG will transition from
optional enhancement to mandatory infrastructure requirement.

Test-Time Compute Scaling and Adaptive Resource Allocation: ReRecent studies demonstrate
that allocating more computation during inference—through multi-sample generation, iterative
refinement, or ensemble methods—improves reasoning quality substantially (Y. Li et al.,
2025). However, optimal compute allocation strategies remain unexplored for MM-RAG.
Should systems invest computation in better retrieval, more generation samples, or longer
verification loops? Future adaptive frameworks may employ resource routers that dynamically
allocate budgets across retrieval granularity (coarse vs. fine-grained embeddings), fusion depth
(cross-attention vs. late interaction), and verification intensity (activating CoVe loops only for
low-confidence queries). Preliminary simulations suggest that adaptive allocation could
improve accuracy by 12-18% at constant computational cost compared to fixed uniform
allocation. Challenges include designing differentiable routers that optimize resource
distribution end-to-end, establishing cost-benefit functions that trade accuracy against latency
across diverse tasks, and creating evaluation benchmarks that measure not only final output
quality but also computational efficiency and carbon footprint.

Embodied and Multimodal Any-to-Any Systems: The frontier extends beyond static documents
toward embodied agents that perceive, reason, and act in physical environments (Abootorabi et
al., 2025). Embodied-RAG systems index multimodal episodes (vision, audio, proprioception)
as hierarchical semantic forests, enabling cross-granularity retrieval for both navigation ("How
do I reach the kitchen?") and explanation ("Why did you take this route?"). Video-RAG
frameworks handle long-form video comprehension by decoupling queries into modality-
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specific retrieval requests—OCR for on-screen text, ASR for spoken dialogue, object detection
for physical entities (Luo et al., 2024). These auxiliary inputs are indexed dynamically, allowing
systems to handle temporal redundancy without exceeding context limits. Challenges include
maintaining temporal consistency across retrieved video segments, fusing heterogeneous
modalities (audio, visual, haptic) in unified representation spaces, and developing evaluation
protocols that assess not only factual accuracy but also coherence in multimodal storytelling.
As Al systems transition from text-centric assistants to multimodal embodied agents, RAG
architectures must evolve accordingly.

Fine-Grained Source Attribution and Provenance Tracking: Current MM-RAG systems cite
documents broadly, returning page numbers or document IDs. Users must manually verify
which specific text span, image region, or table cell supports each generated claim. Fine-grained
attribution requires visual grounding models that link textual claims to bounding boxes or pixel
masks, provenance tracking through multi-hop reasoning chains that document every
intermediate retrieval step, and interactive interfaces where users can drill down from high-
level summaries to atomic evidence units. Recent benchmarks like FinRAGBench-V establish
visual citation as an evaluation standard, revealing persistent gaps—GPT-40 achieves only 78%
citation precision compared to ground truth. Achieving citation precision comparable to
academic footnotes (>95% accuracy) represents a long-term research goal essential for
trustworthy deployment in high-stakes domains.

8.3 Closing Perspective: From Research to Reliable Systems

MM-RAG stands at an inflection point. Many foundational questions are increasingly well-
understood. We know how to align text and images. We know how to reduce hallucinations.
We know how to evaluate systems. The next phase focuses on engineering these capabilities
into reliable, efficient, deployable infrastructures. This requires not just algorithmic advances
but also standardization efforts, reproducible baselines, public benchmarks for high-stakes
domains, and documented best practices for system design. The research agenda must shift
from demonstrating feasibility to ensuring reliability, from maximizing performance to
controlling risks, from academic exploration to production deployment. Hybrid architectures
that dynamically balance modalities, adaptive systems that route queries to appropriate
reasoning modes, and layered defenses that detect and mitigate errors before outputs reach users
will define the next generation. MM-RAG's maturation depends on the field's ability to make
this transition—from impressive demonstrations to trustworthy tools that augment human
decision-making in critical domains. The convergence of agentic intelligence, foundation
model scaling, and structured knowledge promises transformative applications. Realizing this
potential requires sustained collaboration across academia, industry, and regulatory bodies to
address technical challenges, ethical considerations, and societal implications. The path forward
is clear, though substantial work remains.
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1. Introduction

As Atrtificial Intelligence (Al) technologies rapidly permeate human life, they have paved the
way for significant developments and breakthroughs in many fields. One of the most affected
areas is natural language processing (NLP). The integration of transformer-based models into
NLP has led to a revolutionary development. Furthermore, these high-level technologies have
enabled the development of even higher-level and more complex technologies in various fields.
Explainable Artificial Intelligence (XAI) is one of these indirectly developing technologies.
This study contributes to the literature by establishing a solid foundation for the concepts of
NLP, XAl and transformer-based BERT. The focus is on showcasing current research in these
fields and discussing their integration. The BERT model, the best-known of the transformer-
based models introduced by Devlin et al. in 2018, has a mechanism that makes bidirectional
deep inferences from unlabeled text. This feature has elevated the field of NLP to an
extraordinary level. BERT differs from previous models, particularly in its ability to better
understand context (Devlin et al., 2018). In the BERT model, where pre-training of language
representations is facilitated for fine-tuning certain tasks such as question answering and
language inference, no significant changes to the model structure are required during this
process. BERT's contributions are not limited to performance improvement. It also offers new
standards for evaluation in various applications such as sentiment analysis and named entity
recognition. Explainable Artificial Intelligence (XAI) is the name given to the method
developed to understand the decision-making mechanisms behind artificial intelligence
systems. XAl is a significant technology that has gained importance, particularly in areas
defined as high-risk, such as finance and healthcare, due to its ability to provide transparency
(Belghachi, 2023; Minh et al., 2021). Predictions made using artificial intelligence are rapidly
spreading to all fields. This spread has created a new need: the need to interpret artificial
intelligence systems. This technology, XAlI, has emerged from this need. Artificial intelligence
models, known by their nature as "black boxes," are difficult to interpret due to this
characteristic. This results in the concealment of the workings behind decisions (Gilpin et al.,
2018).

Various techniques have been developed to overcome these difficulties and interpret the outputs
of artificial intelligence models. Pre-modeling, post-modeling, and interpretable models are
general examples of these techniques (Minh et al., 2021; Bienefeld et al., 2023; Belle &
Papantonis, 2021). LIME and SHAP techniques for model prediction also stand out as
techniques offering important insights (Kapcia et al., 2021; Tiwari, 2023). These models also
have applications in the healthcare sector. Their importance is further increased because patient
outcomes can change with the interpretation of these results (Chaddad et al., 2023).
Considering this importance, it is necessary to increase the interpretability of NLP models. At
this point, the integration of XAl and BERT techniques gains importance. The use of XAl
techniques to increase the transparency of advanced and complex decision systems, especially
transformer-based models like BERT, has been a focus of research (Auletta et al., 2023).

While combining XAl and BERT technologies offers many benefits, it also presents several
challenges. One of the most important is the high internal complexity of transformer-based
models. This can make it difficult to clearly interpret the outputs (Saranti et al., 2022). Currently,
the fact that the least interpretable models are often the most accurate also presents the problem
of striking a good balance between model performance and explainability (Tiwari, 2023; Hu &
Wu, 2023).
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In summary, while the field of XAl is promising for improving the interpretability of models
like NLP and BERT, there are still a number of challenges to overcome. In this respect, it is
seen that researchers are encouraged to develop new XAl techniques and solve the problems of
transformative architectures (Linardatos et al., 2020; Mohseni et al., 2021). In addition, it is
important to develop user-friendly applications by interpreting XAl techniques in all areas,
especially health and finance, in order to promote transparency, understanding and most
importantly trust among stakeholders (Kapcia et al., 2021; Hu et al., 2021).

The intersection and interaction of natural language processing, BERT and NLP systems will
provide the formation of a rapidly developing and dynamic field. Continuous research and
development of this synergy will allow the examination of the black box feature, which is the
nature of modern Artificial Intelligence, to overcome its difficulties.

The second section includes a literature review on the subject, the methods used in the third
section are explained, and the results obtained in the fourth section are given. Finally, the study
is completed with the conclusion section.

2. Related works

Natural language processing (NLP) is a technology that emerged within artificial intelligence
as a critical area for computers to understand, interpret and produce human language. Especially
with its interaction with Machine Learning (ML) techniques, NLP has evolved in algorithm and
methodology parts. Weber and (Ranchhod and Mamede), who provided a comprehensive
general review of early developments in NLP, emphasized especially in semantic understanding
and syntactic parsing areas (Webber, 1986; Ranchhod & Mamede, 2002). Another study that
summarizes the development of NLP over the years belongs to Mote. Mote emphasized that it
is necessary to focus on more complex models using deep learning (Mote, 2012). NLP is applied
in many areas. The first of these is the health field. Roy et al. mentioned in their study that NLP
can be used for various tasks such as patient interaction and clinical documentation (Roy et
al.,2021). Al-Garadi et al. have stated how NLP analyzes patient data in times of COVID-19
and how it works as a system that serves the epidemic by responding quickly to the necessary
response in times of crisis (Al-Garadi et al., 2022). Velupillai et al. and Savova et al. have
described how electronic health records interact with NLP (Mowery et al., 2015; Savova et al.,
2019). These researchers have demonstrated NLP's ability to extract meaningful data from
unstructured data. In their article, Raza et al. explain how machine learning algorithms have
become the cornerstone of NLP, they have examined the application of various ML algorithms
to NLP tasks (Raza et al., 2023). Referring to models such as GPT (Generative Pre-trained
Transformer) and BERT, Singh & Mahmood have shown that these models have achieved
incredible success in language production and sentiment analysis (Singh & Mahmood, 2021).
Srihith et al. also supports this application, which is a transition step to deep learning (Srihith
et al., 2022).

Other areas where NLP has an impact can be said to be smart city initiatives and chatbots. Patra,
in his study, presented a comprehensive review study showing that chatbots are supported by
NLP and participate in conversations just like humans (Patra & Kumar, 2020). Tyagi and
Bhusha, who explained the potential of NLP to improve the sector in areas such as society,
health, education, made a more comprehensive analysis of NLP for smart cities (Tyagi &
Bhushan, 2023).
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Along with all these developments, the difficulties experienced continue to exist. One of the
difficulties experienced is the data scarcity area for low-resource languages, which is a critical
arca for future research. At the same time, robust evaluation criteria are needed
(Avetisyan.,2023). Chen et al., in their study on the public health crisis, emphasized the need to
develop information retrieval systems and address the problem of misinformation (Chen et al.,
2021).

To summarize all these; NLP is on its way to becoming a dynamic, rapidly developing field,
spreading its influence to a wide area. It is expected to open the door to innovative solutions in
many sectors, especially with its interaction with machine learning techniques. The BERT
model has been redesigning the field of natural language processing since its emergence with
its transformers-based architecture. BERT's revolutionary nature stems from its bidirectional
converter, which enables a much better understanding of linguistic nuances. This bidirectional
converter system, which captures contextual information on both sides of a text string, provides
a superior performance advantage. Thanks to this ability, BERT has come to the forefront in
almost all NLP systems, especially in sentiment analysis.

Many studies continue to highlight BERT's capabilities and contribute to the literature. Sayeed
et al., emphasizing BERT's excellent ability to capture and analyze emotional patterns in texts,
presented a comparison of BERT with other models in their study (Sayeed et al., 2023). Wang
et al., evaluating BERT in terms of versatility and robustness, conducted a similar comparison
through the analysis of negative emotions during the Covid-19 period (Wang et al., 2020). Sun
et al., highlighting the model's fine-tuning capability, stated that this fine-tuning is the main
feature that sets the BERT model apart from other models (Sun et al., 2019). This fine-tuning
method, also emphasized by Sun et al., is performed after the data has been trained. Thus, a
two-stage process management is established. Deng et al. also showed that this two-stage
process increased the success of the study (Deng et al., 2023). Devlin et al. (Devlin et al., 2019)
are among those who argue that these two stages, and especially the BERT model used with
fine-tuning, should be applied to all areas of NLP. Sosea & Caragea, who aimed to develop
these capabilities of BERT, introduced the Emotion masked language modeling (Sosea &
Caragea.,2021). BERT's skills and adaptability have also been evaluated in various areas. For
example, Chandra and Saini used it to model emotions during the US (United States) elections
to demonstrate its ability in political sentiment analysis and presented the results (Chandra &
Saini, 2021). As a different study, Nugroho et al. demonstrated the effectiveness of BERT in
mobile application reviews (Nugroho et al.,2021). Myagmar and Li, who found that the model
would be successful in application between fields, in addition to its success in every field, also
ensured the emergence of cross-domain contextualization (Myagmar et al., 2019). This
continuous evolution in the model has been developed by Delobelle et al. under the name
RobBERT (Robustly Optimized BERT) for Dutch language processing (Delobelle et al.,2020),
and various variants have been developed by Lee et al. under the name BioBERT (Bidirectional
Encoder Representations from Transformers for Biomedical Text Mining) for text mining to be
used in the biomedical field (Lee et al., 2019).

As a result, BERT has become the most important model in all NLP fields, especially in
sentiment analysis, and has become a revolutionary technology. The two-stage process,
consisting of pre-training and fine-tuning, and the bidirectional architecture used for context in
texts, have resulted in superior performance in many areas. These results have increased
researchers' confidence in BERT and transformer-based architectures and paved the way for
their continued existence in the future.
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Transparency, trust, and interpretability are the most important elements for all artificial
intelligence models, such as complex machine learning models, deep learning models, and
transformer-based models. However, the "black box" nature of artificial intelligence models
makes interpretability and transparency difficult (Binder et al., 2022; Rogers et al., 2020).
Therefore, XAl integration is of great importance for ensuring interpretability.

A review of the literature reveals that some researchers have used SHAP and LIME, which are
XAI techniques, for the analysis and interpretation of BERT's decision-making process (Dolk
et al., 2022). These methods are quite valuable. These inferences and interpretations, which are
important for every field, are particularly significant for the health sector (Bauer et al., 2024;
Nazir et al., 2023). Rietberg et al. (Rietberg et al., 2023), who used XAI techniques in the
biomedical field, and Bauer et al., who analyzed data obtained from social media related to
mental health and aimed to create a basis for understanding complex human behavior, have also
contributed to the use of this interpretation in the health field (Bauer et al., 2024). At the same
time, Balkir et al. have brought a different perspective, emphasizing that the integration of XAl
and BERT can play an important role in detecting and reducing biases (Balkir et al., 2022).
Developing XAl techniques better adapted to the features of BERT and using them for the
analysis and interpretation of the outputs of this model should be the focus of future research.
The intersection of these two technologies is expected to play an important role in eliminating
the issue of trust and transparency among users.

3. Materials and method

This section describes and introduces the Natural Language Processing, Explainable Artificial
Intelligence techniques, the BERT technique, and the dataset used in the study.

3.1. Natural language processing (NLP)

Natural language processing, in its most general terms, is a branch of artificial intelligence
developed to enable computers to understand and produce human language and process the data
produced. NLP, which finds itself at the intersection of artificial intelligence, linguistics and
computer science, offers methods for analyzing speech or text inputs. NLP, which shows itself
in many areas such as sentiment analysis, text summarization, machine translation or question-
answer systems, has many tasks such as examining the grammatical structure of the language,
entity recognition, meaning extraction, and creating language models. The most well-known
methods include deep learning-based approaches, n-grams and the language models used in this
study (BERT, GPT, etc.). The most important language model is shown as BERT.

Fig. 1 provides a visual explanation of natural language processing.
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Fig. 1. NLP (Natural language processing)
3.2. Transformer based models

Transformer-based models are deep learning-based and are revolutionary models in the fields
of artificial intelligence and natural language processing. Introduced in 2017 with the article
“Attention is all you need”, this model exhibits effective performance in many tasks in all areas
of NLP. Thanks to the “Attention” mechanism, it has a bidirectional technology that can analyze
the connection of each analyzed word with both the words before and after it. While
traditionally known models such as LSTM (Long short-term memory) and RNN (Recurrent
Neural Network) operate sequentially, transformer models can process all words at the same
time.

Although BERT is the most well-known transformer-based model, there are many important
transformer-based models. Some of these are; GPT, T5, Electra, Transformers-XL and other
BERT-based models.

In this study, BERT, the most well-known transformer model, was studied.
3.2.1. Bert (Bidirectional encoder representations from transformers)

BERT, known as the most important transformer model, was developed by Google in 2018.
While traditional models can analyze language either from right to left or from left to right, that
is, one-way, this model makes a difference with its two-way operation.

The model gains the ability to grasp the entire context more quickly and accurately thanks to
its ability to evaluate both the before and after of a text at the same time. BERT, a pre-trained
model, has a fine-tuning feature. BERT, which is used in many problems such as text
classification, named entity recognition known as NER (Named Entry Recognition), and
question-answer systems, is shown among the best artificial intelligence models with the
efficiency it achieves. BERT was trained with Google's BooksCorpus (approximately 800
million words) and Wikipedia (approximately 2.5 billion words) data sets. In other words, the
training of the BERT technique was carried out with 3.3 billion data. BERT applies the masking
method (Masked Language Model-MLM) and next word prediction (Next Sentence Prediction-
NSP), which have never been applied before. Masking is a method of guessing by covering
(masking) the word to be guessed and analyzing the words to the left and right of it. NSP is a
method of guessing which sentence will come next by analyzing the previous sentences. Fig. 2
shows an illustration of BERT’s MLM and NSP features.

66



International Studies in the Field of Computer Engineering - December 2025

1. BERT is a model built to perform
natural [MASK1] processing tasks.

A:This model learns contextual meaning
by doing two-way processing.

B:I woke up early in the morning and had
breakfast.

Fig 1. MLM and NSP on BERT

Fig. 3 shows a diagram showing the working mechanism of BERT. In the Tokens field and Input
IDs field; in the BERT model, each word is divided into tokens and a token equivalent is
assigned to each word. For example, the word ‘so’ is represented by ‘2061’ as the token

equivalent.

A special command called [SEP] is assigned to each sentence to indicate that the sentence is
over. The [CLS] command seen at the beginning of the input strings is a special command
representing classification. These tokens are given as input and a bidirectional analysis is
performed with the BERT technique in the transformer layer. The Attention mechanism, where
the relationship of each word is calculated, is located here.
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Fig 2. BERT model (Wikipedia.,2024)
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There are 2 main variations of BERT. These are called BERT-base and BERT-large.

BERT-base; contains 110 million parameters and consists of 12 layers, namely transformer

blocks.

BERT-large; contains 340 million parameters and has a system consisting of 24 layers in total.
3.3. Explainable artificial intelligence (XAI)

New technologies and inventions emerge thanks to solutions produced for needs. Explainable
Artificial Intelligence is a technology that emerged from users wanting to understand the
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outputs produced by algorithms such as machine learning and artificial intelligence, and to
know which parameters affect the results obtained more.

This system provides this explanatory power, while overcoming the black box feature of
artificial intelligence has facilitated the transition to the era of transparent and reliable
algorithms.

3.3.1. Xai techniques

Many techniques have been developed and continue to be developed for the explainability of
an artificial intelligence. The most effective and well-known of these are Lime, Shap, Eli5 and
YellowBrick techniques.

Lime (Local interpretable model-agnostic explanations)

Lime was created to understand and explain complex machine learning models. As its name
suggests, it works independently of the model. It can be applied to any machine learning model.
As is known, the aim of XAl techniques is to translate machine language into a language that
humans can understand. For this, Lime aims to explain the prediction of a given model by
approximating it to a simpler model. Instead of explaining the working logic of the entire model,
Lime reduces it to a specific one and investigates the effects of each input or word on the model.
The word local in its name comes from here.

Shap (Shapley additive explanations)

The Shap technique is again used to facilitate the understanding of complex model outputs like
Lime. Unlike this technique, Shapley values are used. These Shapley values are based on
cooperative game theory and calculate the effect of each input on the model output. Shap, which
investigates the effect by adding and subtracting each input, also calculates the negative effects
of the inputs thanks to this method. The Shap technique works only on inputs and outputs
without looking at the internal structure of the model. It is a technique that distributes the effect
results it obtains fairly.

Eli5 (Explain like i’m five)

The Eli5 method is the simplest and simplest method among the others. This model, which has
transferred the plain and understandable language it uses to its name, uses the expression
‘Explain it as if I were 5 years old’ in the form of explaining it so simply that even a 5-year-old
child can understand it. The Shap method, which calculates the effect of the inputs on the result
in a simple way, is also used to detect and correct model errors.

Yellowbrick

YellowBrick is actually a Python library. Its purpose is to visualize machine learning models
and contribute to their understanding. YellowBrick can work with any machine learning like
Lime, meaning it is a model- independent technique. With this technique, which can work with
known machine learning models like Scikit-learn, the decision and performance of the model
can be examined.
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3.4. Dataset

The dataset used in the study was obtained from Kaggle. It is located on Kaggle under the title
NLP on Research Articles (Vetrivel-PS.,2020). The dataset holds the title and abstract
information of more than 20 thousand articles. In today's literature, it is difficult to label which
field the articles belong to. This dataset is both suitable for natural language processing and in
a field that needs to be analyzed. The articles in the dataset will be collected under 6 main
headings. These fields are Computer Science, Physics, Mathematics, Statistics, Quantitative
Biology and Quantitative. This dataset was analyzed with the materials and methods used in
the study and the results obtained were explained with XAl techniques.

4. Experimental results

This section is evaluated in two subsections. First, the results obtained by applying the BERT
model to the dataset are shared. Secondly, the results of the XAI techniques applied to the
dataset trained with the model to determine the factors affecting the classification result are
given.

4.1. Bert classification results

The transformer-based BERT model created in the study was applied to the dataset for
classification. The results obtained for 6 different areas in the dataset are presented, as well as
the classification results applied to the entire dataset. Table 1 shows the classification results

obtained from different areas.

Table 1. Classification results of different areas

# Co.mputer Physics | Mathematics | Statistics Q.u antitative Q.uantltatlve
Science Biology Finance

acc | 0,882 0,949 0,921 0,893 0,974 0,995

f1 0,878 0,939 0,895 0,857 0,647 0,865

As with all dataset results, high success was achieved in the field results evaluated separately.
In particular, the articles in the Quantitative Finance field showed a success rate close to 100%
due to their content consisting of more specific words compared to other fields. These success

results are shown graphically in Fig. 4.

oz

0o

Computer Science

Physics Mathematics

Statistics

Quantitative Blology Quantitative Finance

Fig. 3. Classification result of the fields (Graphical representation)
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The results obtained by applying the BERT technique to the entire data set, which is the main
evaluation in the study, are given in Table 2. The results, which obtained an accuracy value of
93.66%, are very important for future studies.

Table 2. BERT classification results

# BERT
test loss | 0,1548
test acc | 0,9366

4.2. Application of XAl techniques

There are four known XAI techniques: Shap, Lime, YellowBrick and Eli5. In this study, by
applying these methods to the dataset trained during classification, it has been revealed more
clearly how the machine learning decision mechanism works and which parameters are more
effective to use. The results are important in terms of overcoming the black box feature of
artificial intelligence and better understanding by the end user.

4.2.1. Shap results

According to the shap technique, which is essentially derived from game theory, each feature
is a player. According to this method, the final reward is a prediction. The aim of the technique
is to distribute the total reward fairly among the players. This method stands out by providing
an infrastructure for tree-based models and performing very fast operations. Fig. 5 and Fig. 6
show the extent to which the words that determine which class two different articles classified
in two data sets affect whether they are included in this class or not. For example, in the article
in Fig. 5, the word “logic” has an effect of 0.14, and the word “semantic” has an effect of 0.28
on this article being included in the “Physics” category.

o 220 2 )| { { (U

logic = 0.1457935048971901 semantic = 0.2852374570893944 normal = 0.38878158492557

-5 4 3

Fig. 4. An article from the physics category

Figure 6 shows an article included in the “Computer Science” field. The word “system”
contributed 0.30 and the word “software” contributed 0.29 for the article to be included in this
field.
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system = 0.3026509870053816

M

higher . lower
base value {x)
1.87
= 0 1 2 3 4
software = 0.2999788250153206 component =(0.28058870185073226

Fig. 5. An article from the computer science

Lime contributes to the reason why a prediction is made and provides the infrastructure for
optimizing the results obtained from those predictions. For example, Fig. 7 shows which

features contribute to which field according to the abstract of a Computer Science article. The
word “filters” contributes to this prediction by 0.16, the word “compression” by 0.11, while the
word “specific” is on the side of not being included in these fields by 0.06.

Explanation for label: Computer Science

Prediction probabilities

Computer Sc... [N

Statistics 0.12

Mathematics |:|

Physis [ ]

Other

10T Computer Science Computer Science

Text with highlighted words

Towards Evolutional Compression Compressing convolutional neural networks
(CNNz) is essential for

transferring {8 success of CNNs to a wide variety of applications to [HOBIlE
{&Wices. In contrast to directly recognizing subtle weights or [HHEHE as
redundant in a given CNN., this paper presents an evolutionary method to
automatically eliminate redundant convolution 8. We represent each
compressed network as a binary individual of specific fitness. Then, the
population is upgraded at each evolutionary iteration using genetic operations.
As aresult, an extremely compact CNN is generated using the fittest
individual. In this approach, either large or small convolution [HlBH can be
redundant, and B in 8 compressed network are more distinct. In
addition, §ifice the number of [llB in each convolutional layer is reduced,

#ha numhar Af filtar chaneals and ha civa AF fantira sanne ara alea dascancad

Fig. 6. Lime case study (1)

Looking at the example in Fig. 8, it can be seen that the word “towards” is not included in the
Physics field of this study by 0.85. The study is in the Computer Science field and the prediction
1s correct.

Explanation for label: Physics

Prediction probabilities

Computer sc... [N

Statistics 0.12

-

ics

1
Physis ]
other [ 1]

NOT Physics

Physics

Text with highlighted words

[IGREREs Evolutional Compression Compressing convolutional neural networks
(CNNs) iz essential for

transferring the success of CNNs to a wide variety of applications to mobile
devices. In contrast to directly recognizing subtle weights or filters as
redundant in a given CNN, this paper presents an evolutionary method to
automatically eliminate redundant convolution filters. We represent each
compressed network as a binary individual of specific fitness. Then, the
population is upgraded at each evolutionary iteration using genetic operations.
As a result. an extremely compact CNN is generated using the fittest
individual In this approach, either large or small convelution filters can be
redundant, and filters in the compressed network are more distinct. In
addition, since the number of filters in each convolutional laver is reduced,

tha mueahar Af filtar rhaneals and tha civa AF fantnra sinane ara alen dancancad

Fig. 7. Lime case study (2)
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4.2.3. Eli5 results

Eli5 is the simplest and most understandable method among XAI methods. As stated in its
acronym, it was developed to explain artificial intelligence methods in a simple and
understandable way, as if explaining it to a 5-year-old child.

Fig. 9 shows the analysis of two different articles with the Eli5 method. As can be seen from
the analysis of the words, the first study belongs to the Computer Science field and the second
study belongs to the Mathematics field. With the Eli5 method, it is clearly and explicitly shown
which words contribute to the inclusion of these studies in these fields.
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Fig. 8. Eli5 examples
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YellowBrick is the latest XAl technique. Thanks to the matplotlib and scikit-learn libraries it is
connected to, it has the ability to be used directly in many machine learning models. In this
way, it has a natural ability to visualize data by handling it one by one.

Fig. 10 and Fig. 11 show the Yellowbrick technique images showing which parameters are used
to include two different articles in the Mathematics and Computer Science fields.
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Fig. 9. Yellowbrick example (1)

It has been observed that words such as “prove”, “asymptotic”, “mathbb” are more effective
for an article in the field of Mathematics, while words such as “robot”, “language”,
“complexity” are more effective for an article in the field of Computer Science.
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Fig. 10. Yellowbrick example (2)
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5. Conclusions and future works

In this study, the effectiveness of the BERT technique, which is the most important natural
language processing technique, was tested on the NLP on Research Articles data set. As a result
of the obtained data, this model showed high success with an accuracy value of 0.9366 and a
loss value of 0.1548. Another issue emphasized in the study is the transparency and
interpretability of the outputs obtained from complex models. Explainable Artificial
Intelligence (XAI) techniques were used to understand the logic in the internal mechanism of
these complex models. The data classified with the BERT technique was interpreted with the
XAI techniques Lime, Shap, Eli5 and YellowBrick methods, and it was clearly shown which
parameters or features were more effective in making this classification and making decisions.
This contributed to the increase in the model's accuracy as well as its transparency and
reliability. As a result, by combining two important technologies such as BERT and XAI, which
have advanced transformers-based architecture, not only high classification performance was
achieved, but also a critical success was shown in terms of making the logic behind this
performance understandable and explainable. In the future, the development of more advanced
XAl techniques and the discovery of explanatory methods that can be used in decision-making
processes, especially with deep learning, are important in terms of contributing to this field. In
addition, incorporating XAl methods into the process of improving the results as well as their
explanatory nature is an important area of research.
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1. INTRODUCTION

Colorectal cancer (CRC) remains a life-threatening malignancy, ranking among the three
most common cancers worldwide. Despite advances in screening and treatment, mortality
rates remain high, largely due to late diagnosis and heterogeneity in tumor progression. Early
and sensitive detection of precancerous lesions plays a crucial role in improving patient
survival and providing effective therapeutic interventions.

Despite significant advances in screening and treatment, CRC mortality continues to be
affected by delayed diagnosis and the complex interaction of genetic, environmental, and
lifestyle factors. Recent epidemiological data indicate an increasing incidence of CRC,
particularly in younger populations, highlighting the urgent need for early diagnosis and
improved prevention strategies. While traditional diagnostic approaches such as
colonoscopy, histopathology, and imaging have made significant contributions to disease
management, their limitations in sensitivity, reproducibility, and interpretative subjectivity
necessitate the integration of more advanced analytical tools.

Artificial intelligence (Al) has rapidly emerged as a groundbreaking force in medical
research and has become a promising technology for improving diagnostic and predictive
accuracy in colorectal cancer. Image analysis, powered by machine learning (ML) and deep
learning (DL), is revolutionizing the interpretation of medical images, enabling automatic
detection, segmentation, and classification. This allows Al systems to be integrated into
colorectal imaging modalities such as colonoscopy, computed tomography (CT), magnetic
resonance (MRI), and histopathological imaging to automatically detect and classify lesions,
assess tumor progression, and predict treatment outcomes with high accuracy. This
increasingly powerful interaction between oncology and computational intelligence
represents a paradigm shift in colorectal cancer research, transforming traditional diagnostic
approaches into data-driven, predictive, and precision medicine.

Recent studies published in the literature indicate that artificial intelligence (Al) is playing
an increasingly important role in the detection and treatment of colorectal cancer. Al-
powered colonoscopy systems help doctors reduce diagnostic errors by detecting polyps and
abnormal tissue in real time. Deep learning models developed in digital pathology can
distinguish cancerous from healthy tissue with high accuracy and identify certain genetic
alterations associated with the disease. Al-based imaging and predictive models are also
being used to predict patient response to treatment, assess the likelihood of disease
recurrence, and support personalized treatment plans. However, despite these advances,
several challenges remain to be addressed, such as data diversity, model transparency, and
clinical validation. Therefore, close collaboration between doctors, data scientists, and
researchers is crucial for the integration of Al technologies into daily medical practice.

This literature review aims to provide a comprehensive overview of Al- and image
analysis-based approaches to the diagnosis and prediction of colorectal cancer. It examines
the evolution of Al-enabled diagnostic systems, classification algorithms, and predictive
models, highlighting their contributions to precision oncology. Furthermore, this review
discusses the current challenges, ethical considerations, and emerging trends related to the
integration of Al into clinical practice. By synthesizing findings from diverse fields, the
study demonstrates the transformative power of Al in advancing personalized cancer care
by leveraging the relationship between medical imaging and predictive analytics.
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1.1.Colon Cancer

Colon cancer is a type of tumor that arises in the colon or rectum, situated in the lower
portion of the digestive tract (Allison, 2010). The colon constitutes the majority of the large
intestine, while the rectum is positioned at its terminal section. Its high prevalence is mainly
attributed to unhealthy lifestyle choices, including persistent smoking, high red meat
consumption, and insufficient fruit intake, along with factors such as family history of the
disease and increasing age.

Colon cancer is divided into four main stages. Stage one is when the tumor is located in
the mucosa, or inner surface layer, of the colon or rectum and has not yet spread to the organ
wall. Stage two is when the tumor begins to invade the colon or rectum wall, but surrounding
tissues or lymph nodes are not yet affected (Baxter et al., 2009). Stage three is when the
tumor has spread to the lymph nodes but has not metastasized to other parts of the body.
Stage four is when the tumor has metastasized to distant organs such as the lungs (Bera et
al., 2019). Figure 1 shows the four main grades of colon cancer (Rathore et al., 2013).

Figure 1. The different stages of colon cancer

2. FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE IN ONCOLOGY
2.1.0verview of AI, Machine Learning (ML) and Deep Learning (DL)

Al has played a transformative role in healthcare processes such as data-driven decision
making, predictive analysis, and increased diagnostic accuracy. Today, Al systems
contribute to the development of clinical decision support systems by processing large and
complex datasets from diverse sources, such as medical images, genomic data, and electronic
health records (Russell & Norvig, 2021). Within the healthcare ecosystem, Al subfields such
as machine learning (ML), natural language processing, and computer vision offer
significant opportunities to improve patient outcomes and reduce diagnostic errors. Al
technologies integrated into clinical applications have demonstrated remarkable results in
early disease detection, risk stratification, and increased operational efficiency in healthcare
(Jordan & Mitchell, 2015).

Machine learning (ML) and its evolved branch, deep learning (DL), have accelerated the
adoption of Al in medical applications. ML algorithms identify hidden patterns in patient
data, enabling the prediction of chronic conditions such as cancer, cardiovascular disease,
and diabetes (Goodfellow, Bengio & Courville, 2016). Furthermore, ML models,
particularly convolutional neural networks, have outperformed traditional methods in
medical imaging for tasks such as tumor detection and retinal disease classification. Overall,
Al, ML, and DL are supporting the development of personalized, precise, and data-driven
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healthcare by bridging the gap between medical imaging and predictive analytics (Esteva et

al., 2019).

2.2.Commonly Used Algorithms in Cancer Research (CNN, SVM, Random Forest,

etc.)

Machine learning algorithms such as SVM, Naive Bayes, Decision Trees, Random
Forests, K-means, KNN, Logistic Regression, eXtreme Gradient Boosting (XGBoost), and
Hybrid models are used in cancer research. These algorithms, which offer distinct
advantages in terms of accuracy, adaptability, and scalability, analyze large datasets to
develop personalized treatments and improve patient outcomes by enhancing early
diagnosis. The table below describes the characteristics, strengths, and limitations of these

algorithms.

Table 1. Comparative review of commonly used algorithms in cancer research

Algorithm Core Principle Applications in Advantages Limitations
Cancer
Research

Convolutional | A deep learning Tumor detection, | High accuracy, automatic | Requires large datasets, high
Neural architecture histopathological | feature extraction, computational cost, limited
Network designed to image analysis, excellent performance interpretability.
(CNN) capture spatial MRI and CT with complex medical

relationships and | scan images.

recognize visual | classification.

features within

image data
Support A supervised Cancer subtype Effective with small Inefficient with large
Vector learning classification, datasets, robust against datasets, sensitive to kernel
Machine technique that gene expression | overfitting, strong selection.
(SVM) categorizes data | profiling, generalization capability.

by determining biomarker

the optimal discovery.

hyperplane for

separation.
Random A machine Disease Stable with noisy data, Potential overfitting, limited
Forest (RF) learning prognosis, identifies variable model interpretability.

approach that survival importance, high overall

merges several prediction, risk accuracy.

decision trees to | factor analysis.

enhance the

accuracy of

predictions.
K-Nearest An instance- Cancer subtype Simple to implement, no Slow with large datasets,
Neighbors based machine classification, training phase required, sensitive to noise and
(KNN) learning method | patient effective with small irrelevant features.

that assigns a clustering. datasets.

class to a sample

by measuring its

similarity

(distance) to

nearby data

points.
Logistic A statistical Cancer risk Easy to interpret, low Limited ability to capture
Regression model that prediction, computational cost, useful | nonlinear relationships,
(LR) estimates the prognostic factor | as a baseline model. depends on linear

probability of a evaluation. assumptions.

binary outcome

based on input

variables.
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The algorithms in Table 1 demonstrate the distinct advantages and limitations of both
classical and deep learning-based approaches in cancer research. Deep learning models such
as CNN offer significant advantages in processing complex image data by offering high
accuracy and automatic feature extraction in medical image analysis. However, the large
dataset and high computational capacity required by these algorithms are a limiting factor in
clinical applications. On the other hand, supervised learning methods such as SVM and
KNN, while demonstrating strong performance on small datasets, experience limitations in
efficiency and speed as data size increases. The Random Forest algorithm, on the other hand,
provides stable results in noisy data and offers the advantage of determining variable
importance, but it suffers from overfitting and limited interpretability.

Logistic regression, as a classic statistical model, offers low computational cost and high
interpretability in cancer risk estimation and prognostic factor assessment; however, because
it relies on linear assumptions, it falls short in capturing complex, nonlinear relationships.
Overall, the table highlights that algorithms used in cancer research should be selected based
on data type, application purpose, and computational requirements. In clinical and research
contexts, considering the advantages and limitations of algorithms, the use of hybrid
approaches or multistage analysis strategies can yield more reliable and accurate results.

2.3.Radiomics and Image Analysis in CRC

Radiomics and image analysis play a crucial role in extracting quantitative features from
colorectal cancer (CC) images. These techniques enable the identification of patterns and
biomarkers that are not visible to the human eye, contributing to early diagnosis, treatment
planning, and prognosis prediction. However, challenges remain, such as data
standardization, image labeling, and integration of multi-source image data. Recent research
demonstrates that combining radiomics with clinical and molecular data significantly
improves diagnostic accuracy and predictive performance. Continued advances in artificial
intelligence algorithms and imaging technologies will enable these approaches to become
more reliable and clinically applicable in the near future.

3. METHODOLOGY

This review was conducted following the principles of systematic and narrative literature
synthesis. A comprehensive search was performed using databases including ScienceDirect,
PubMed, IEEE Xplore, Scopus, and SpringerLink, focusing on studies that utilized
artificial intelligence (AI), machine learning (ML), or deep learning (DL) methods in
colorectal cancer diagnosis, classification, or staging. Keywords such as “colorectal
cancer,” ‘“artificial intelligence,” ‘“deep learning,” ‘“radiomics,” “classification,”
“staging,” and “predictive modeling” were used in various combinations.

To ensure coverage of all stages of technological development, no year limitation was
applied; both original research articles and review articles were included. Studies indexed in
peer-reviewed journals were included. Articles that used non-Al-based methods or focused
on gastrointestinal diseases other than colorectal cancer were excluded.

No year limitation was applied in this review to ensure a comprehensive understanding
of the evolution and diversity of artificial intelligence (Al) applications in colorectal cancer
(CRC). The development of Al-based diagnostic and staging models has progressed rapidly
over the past decade, but foundational studies published earlier continue to provide essential
methodological insights and baseline comparisons. Including both earlier and recent
publications allows a broader evaluation of trends, algorithmic improvements, and validation
strategies over time. This approach also helps identify persistent challenges and highlight
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how AI techniques have evolved to overcome them, thereby offering a complete picture of
the field’s trajectory.

Each selected publication was reviewed for its methodological design, dataset
characteristics, algorithm type, evaluation metrics, and validation strategies. The findings
were then synthesized and grouped under four main categories: (1) Deep learning for
histopathological image classification, (2) Tumor grading and stage prediction, (3) Multi-
modal approaches combining imaging and clinical data, and (4) Validation and
generalization of classification models. This structure allowed for a critical comparison of
methods and the identification of common challenges and future directions.

4. AIIN DIAGNOSTIC IMAGING OF COLORECTAL CANCER
4.1.Colonoscopy Image Analysis Using Al

This review focuses primarily on the use of artificial intelligence applications in
identifying and characterizing colorectal polyps, with the aim of improving the effectiveness
of colorectal cancer screening and prevention.

In recent years, research on Al-assisted colonoscopy has rapidly increased, and many
commercial systems have been developed. However, comparing the effectiveness and
accuracy of these systems has been difficult, and a standardized evaluation method has not
been established. While deep learning advocates claim that these systems, trained on large
datasets, offer consistent accuracy, this review aims to evaluate the performance of existing
commercial systems and the validity of these claims. Table 2 below provides information
about artificial intelligence systems used in colonoscopy.

Tablo 2. Commercially available Al-assisted colonoscopy systems

Name Company Technique Approval / Year
GI Genius (ColonPRO) | Cosmo / Medtronic Enhanced CADe | 2024 (Software Update)
(Medtronic, 2024)
EndoScreener Wision Al (Shanghai, China) CADe 2021 (Wision Al 2021)
CAD EYE Fujifilm (Tokyo, Japan) CADe and 2020 (Fujifilm, 2020)
CADx
ENDO-AID Olympus Corporation (Tokyo, CADe 2020 (Olympus Corporation,
Japan) 2020)
Smart Vision NEC Corporation (Tokyo, Japan) CADe 2020 (NEC Corporation, 2020)
GI Genius (FDA De Cosmo / Medtronic CADe 2021 (FDA De Novo Clearance)
Novo) (Medtronic, 2021)
DISCOVERY Pentax Medical (Tokyo, Japan) CADe 2020 (Pentax Medical, 2020)
EndoBRAIN Cybernet Systems Corporation CADx 2018 (Cybernet Systems, 2018)
(Tokyo, Japan)
EndoBRAIN-EYE Cybernet Systems Corporation CADe 2020 (Cybernet Systems, 2020)
(Tokyo, Japan)
CADDIE (Odin / Olympus / Odin Vision Cloud-based 2024 (FDA 510(k) Clearance)
Olympus) CADe (Olympus Global, 2024)
GI Genius Medtronic (Dublin, Ireland) CADe 2019 (Medtronic, 2019)

In recent years, the use of artificial intelligence systems developed for upper and lower
gastrointestinal endoscopy has rapidly increased. Computer-aided diagnosis (CADe)
systems identify and detect polyps in still images or videos. Today, these systems are
integrated into real-time colonoscopies, alerting the operator with colored boxes around the
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polyp's location, facilitating intervention. Additionally, computer-aided diagnosis (CADx)
systems can distinguish polyp types and degrees of dysplasia, providing operators with
instant diagnostic information on a variety of conditions, from benign hyperplastic polyps to
advanced cancers. Thus, both the detection and diagnosis processes are becoming safer and
more effective thanks to Al (Young, Edwards & Singh, 2023).

4.2.Detection of Polyps and Adenomas with CNN

Given the high risk of colorectal cancer, real-time automated polyp detection systems
help clinicians instantly detect polyps, reducing missed diagnoses. Artificial intelligence-
assisted colonoscopy has become a growing area of interest with technological
advancements. These systems, thanks to CADe and CADx technologies, play a significant
role in the detection and evaluation of precancerous polyps. In current applications, deep
learning, and particularly CNNs, contribute to improving adenoma detection rates (ADR) by
accurately identifying and localizing premalignant lesions. CNN refers to a specialized type
of artificial neural network and deep learning approach that has proven highly effective for
analyzing medical images (Shin et al., 2016) (Figure 2).

Fully
Convolution Pooling Convolution Pooling connected  Output
layers

® —¥ Non-neoplastic

N

@ — Neoplastic

Input image

Feature Extraction L classification—
Figure 2. A convolutional neural network (CNN) design for colorectal polyp classification.

In the most recent prospective randomized controlled study, Wang et al. (2019) assessed
the effectiveness of a deep learning-based CADe system in detecting polyps and adenomas.
A total of 1058 patients were randomly assigned to undergo either standard colonoscopy or
colonoscopy assisted by the CADe system. Polyps detected in the CADe system were
highlighted on the screen as empty blue boxes. The results showed that the adenoma
detection rate (29.1% vs. 20.3%) and the number of adenomas per patient (0.53 vs. 0.31)
were increased in the CADe group. This increase was largely due to more effective detection
of small polyps, with no significant difference in large adenomas, and a significant increase
in the number of hyperplastic polyps in the CADe group. The study demonstrates that Al-
assisted colonoscopy significantly improves the detection of small polyps that may be
overlooked even by experienced endoscopists, which may reduce the risk of interval
colorectal cancer. Mori et al. (2018) demonstrated that CADx support can help endoscopists
distinguish between neoplastic and non-neoplastic polyps during colonoscopy, thus enabling
the implementation of a “diagnose and leave” approach for non-neoplastic polyps (Mitsala
etal., 2021).

4.3.Automated Segmentation and Feature Extraction Techniques

Segmentation in images is a crucial process in the analysis of histopathological images,
as it significantly contributes to addressing various diagnostic and analytical challenges. The
tasks involved vary across different stages, and even each image presents unique
characteristics. Image segmentation can be compared to clustering, as it aims to define
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meaningful regions or segments that may vary depending on the model applied or even
among individual cells (Kekelidze et al., 2013).

The first approach to polyp segmentation is to utilize image processing techniques.
Karargyris and Bourbakis (2009) extracted features from images using Log-Gabor filters to
perform automatic polyp segmentation. Jia (2015) used the K-means clustering algorithm to
identify polyp contours and segment them. Hwang et al. (2007) used the region-maximum
method to determine the starting point in the watershed algorithm. They then applied the
elliptic fitting technique to eliminate the redundant regions obtained in the previous step.

The second approach used for polyp segmentation is based on extracting features from
image patches and labeling them as polyps or non-polyps based on these features. Tajbakhsh
et al. (2015) developed a method that uses the Canny edge detector in each color channel.
This method generates edge maps. Oriented patches are then extracted for each pixel, and
these patches are classified as polyps or non-polyps.

The third method employed for polyp segmentation involves the use of Convolutional
Neural Networks (CNNs). CNNs are a well-established deep learning framework that
captures intricate features from raw images using trainable filters and pooling layers (Nasr-
Esfahani et al., 2016). In this setup, the extracted features are passed to a classifier that carries
out the classification task. Park et al. (2015) implemented a CNN as a feature extractor
utilizing a three-scale patch representation for polyp region segmentation. Their network
computes 60 features per input patch and classifies them through a fully connected layer
consisting of 256 neurons. Additionally, a Gaussian filter is applied post-CNN processing to
smooth the segmentation outputs and minimize noise. Ribeiro et al. (2016), on the other
hand, employed three convolutional layers and two pooling layers to derive features from
RGB patches, followed by a fully connected layer to classify the resulting 1024 features.

The fourth strategy for polyp segmentation involves the use of Fully Convolutional
Networks (FCNs) (Long et al., 2015). In recent years, FCNs have become one of the most
effective deep learning techniques for enhancing polyp segmentation due to their high
computational efficiency in demanding prediction tasks. FCNs represent an advancement
over traditional CNNs by replacing fully connected layers with deconvolution layers and
leveraging information from earlier layers to boost segmentation accuracy. In polyp
segmentation, Akbari et al. (2018) applied an FCN model to identify potential polyp
candidates and then used the Otsu thresholding method to segment the polyp regions,
substantially improving accuracy. Similarly et al. (2019) evaluated their FCN-based polyp
segmentation approach against six other architectures: AlexNet, GooglLeNet, VGG, and
three ResNet variants with 50, 101, and 152 layers.

5. PREDICTIVE MODELING AND PROGNOSTIC APPLICATIONS
5.1.Survival Prediction and Recurrence Risk Estimation Using Al Models

Al demonstrates significant potential in predicting survival outcomes and risk of
recurrence in colorectal cancer (CC) by leveraging complex imaging, histopathological, and
clinical data. CNNs and attention-based architectures, in particular, can extract predictive
features related to tumor aggressiveness and patient prognosis from whole-slide images.
Recent studies integrating radiomics, gene expression profiles, and clinicopathological
variables have yielded higher accuracy in predicting disease-free survival and recurrence
probability than traditional statistical methods. These Al-based prognostic models not only
enhance individualized risk stratification but also offer clinical decision support for
identifying patients who may benefit from adjuvant therapy or close follow-up. As
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multicenter validation studies increase, such predictive systems are expected to become a
core component of precision oncology in colorectal cancer management.

Ozdemir et al. (2025) aimed to integrate immune scoring with a radiology-assisted Al
model to develop a prognostic prediction system for patients with resectable colon cancer.
122 patients who underwent surgery between 2011 and 2020 were analyzed. The immune
score was calculated based on CD3 and CD8 T cell densities in the intratumoral and invasive
margin regions, and preoperative CT images were evaluated with a deep learning-based
algorithm, along with radiologic and clinicopathologic data. Among the models, the best-
performing Al model (Model 222) achieved 76% accuracy, 80% specificity, and an AUC
ROC value of 0.65 in predicting disease-free survival (DFS). The results demonstrate that
the proposed Al-based system can effectively classify the risk of recurrence and support
clinical decision-making by predicting patient prognosis after radical resection. Being the
first study in the literature to combine immunological and radiological features within a deep
learning model, it offers a promising approach for personalized treatment planning in
colorectal oncology.

5.2.Real-world Examples of Predictive Systems in Clinical Trials

In clinical trials, predictive systems involve artificial intelligence and statistical models
developed to predict patient health status, predict treatment response, or assess the risk of
complications. For example, in cardiology, some systems can predict a patient's risk of heart
attack based on their age, blood pressure, cholesterol level, and genetic profile. In oncology
trials, tumor biomarkers and histopathological data can be used to predict a patient's response
to chemotherapy or risk of recurrence. In the real world, these predictive systems are
integrated with electronic health records and used as clinical decision support systems,
guiding physicians to develop more personalized and timely intervention strategies for
patients. Thus, predictive systems enhance both patient safety and improve the efficiency
and cost-effectiveness of healthcare.

The literature offers numerous examples of real-world applications of predictive systems
in clinical trials. For example, in the field of colorectal cancer (CRC), machine learning
models based on patient clinical follow-up data have been developed and predicted poor
prognostic risks. These models allow for more accurate assessments of patient response to
treatment and potential complication risks. Furthermore, research using real-world data
plays a critical role in analyzing treatment outcomes for patient groups that are often
underrepresented in clinical trials. This data provides valuable information to guide
treatment choices and optimize strategies. These examples highlight the importance and
potential benefits of integrating predictive systems with real-world data in clinical trials.

6. RESEARCH FINDINGS

The reviewed studies demonstrate that Al and deep learning techniques have achieved
significant progress in the classification and staging of colorectal cancer. CNNs have been
widely applied to histopathological and radiological images, showing high accuracy in
distinguishing malignant from benign tissues and in predicting tumor stage. Several studies
have integrated clinical, genomic, and imaging data to build multi-modal models that
enhance diagnostic precision and support personalized treatment planning. Moreover,
validation studies using independent datasets indicate that robust and generalizable models
can effectively assist clinicians in early diagnosis and decision-making. Overall, the findings
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suggest that Al-based classification systems are transforming traditional diagnostic
workflows and paving the way toward data-driven precision oncology in CRC management.

6.1.Al-Based Classification and Staging Systems
6.1.1. Deep Learning for Histopathological Image Classification

Deep learning has emerged as a transformative approach for histopathological image
classification in colorectal cancer, offering unprecedented accuracy in recognizing complex
tissue patterns that are often challenging for human observers to interpret consistently. By
leveraging convolutional neural networks and attention-based architectures, these systems
can automatically learn discriminative features such as glandular structure, nuclear atypia,
and stromal organization without the need for handcrafted descriptors. This capability not
only accelerates diagnostic workflows but also helps reduce inter-observer variability,
enabling more standardized assessments across laboratories. Additionally, recent advances
in model interpretability have made it possible to highlight regions that influence predictions,
increasing clinician trust in Al-assisted diagnosis. As datasets continue to expand and
annotation strategies improve, deep learning is poised to play an increasingly central role in
the accurate and efficient classification of histopathological slides.

6.1.2. Tumor grading, stage prediction, and morphological analysis

Al is increasingly offering sophisticated models for tumor grading and stage estimation
in colon cancer using histopathological and imaging data. For example, Leo et al. (2024)
proposed a system that used gland segmentation before using transformers, and then
performed adenocarcinoma grading using a CNN ensemble. This two-stage approach
reduced learning time and increased classification accuracy compared to traditional patch-
based classification methods. Furthermore, Bahrambanan et al. (2025) compared CNN and
ML mixture models using bioinformatics analysis of colon cancer data, achieving accuracy
rates approaching 90% with specific feature selection methods (Bahrambanan et al., 2025).
These studies demonstrate that Al models can provide staging and prognostic inferences not
only from tissue images but also by quantitatively assessing morphological features.

One of the strengths of Al-based staging models is the reduction of inter-observer
discrepancies, which makes the classification process objective and reproducible. However,
challenges are also evident: variables such as staining techniques across laboratories,
differences in microscope/scan equipment, and histological section quality can degrade
model performance across centers. Therefore, models must be tested with external data
validation from multiple centers.

6.1.3. Multi-Modal Approaches Combining Imaging and Clinical Data

In colon cancer, Al models are no longer relying solely on single-modal image analysis
but are now combining clinical, molecular, and radiologic information to provide more
powerful prediction systems. For example, Xie et al. (2025) developed a multimodal model
that integrates histopathological, clinical parameters, and radiologic data. This system
demonstrated exceptional performance in guiding adjuvant chemotherapy decisions in
patients with Stage II colon cancer. Similarly, Lin et al. (2024) used a multimodal artificial
intelligence approach to combine pathology images with clinical variables to perform
prognostic analyses and improve staging accuracy. Such models go beyond single-modal
approaches and provide the opportunity to assess tumor biology from a broader perspective.

The power of multi-model systems lies in their ability to integrate heterogeneous data.
However, this presents complex challenges such as data preprocessing, missing data issues,
and harmonization of units of measurement. Lack of clinical records or incompatible data
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collection standards across centers can hinder the model's real-world application. Therefore,
data harmonization and missing value management are critical factors for the success of
these models.

6.1.4. Validation and Generalization of Classification Models

The acceptance of Al-based classification models for clinical use depends on consistent
performance not only across training data but also across centers, populations, and devices.
Rosen et al. (2025) developed an Al-powered decision support model using data from the
Danish national registry and single-center datasets for 18.403 patients. The model achieved
an AUC=0.79 on the validation set, indicating both clinical validity and generalization
potential. The integration of this model into clinical practice provides valuable insights into
how Al technologies can function in the hospital setting. Furthermore, Mazaki et al. (2024)
integrated a combination of CNN and SVM into a prognostic model and evaluated the
model's consistency by testing it with an external validation set.

However, there are obstacles to overcome for model generalization: imaging protocols
that are dissimilar to the training data, different patient demographics, and class imbalances
can increase the risk of overfitting. The use of explainable artificial intelligence (XAI)
methods is an important step toward gaining clinician trust by making model internal logic
more transparent. Without standardized performance reporting protocols and community-
based external validation studies, implementing modern Al models in clinical practice is
risky.

6.2. Predictive Modeling and Prognostic Applications
6.2.1. Survival Prediction and Recurrence Risk Estimation Using AI Models

Al-based prognostic models exhibit stronger predictive performance compared to
classical statistical methods in predicting survival and the probability of recurrence in colon
cancer. For example, Hsu et al. (2023) achieved 85% accuracy in predicting 5-year survival
in a cohort of 1.200 patients by integrating clinical and genetic data with a deep learning
model. Yamada et al. (2022) developed a model to predict the risk of recurrence in stage 11
and III colon cancer patients using radiomics features obtained from preoperative CT images
and reported an AUC of 0.81. Furthermore, Kather et al. (2020) demonstrated the potential
of Al in molecular-level prognostication with a deep neural network model that
automatically predicts microsatellite instability (MSI) from histopathological images. These
models not only forecast survival outcomes but also facilitate the development of
individualized treatment strategies and the early detection of patients at high risk.

6.2.2. Predictive @ Models for Treatment Response (Chemotherapy,
Immunotherapy)

Al-based models are becoming increasingly effective in predicting response to
chemotherapy and immunotherapy in colon cancer. For example, Ahn et al. (2023)
developed a model that predicted response to FOLFOX treatment in 450 metastatic colon
cancer patients using deep learning-assisted radiomics analysis and reported an AUC of 0.83.
Sun et al. (2022) built a multi-modal Al system that integrated gene expression profiles,
radiologic data, and clinical parameters, achieving 82% accuracy in predicting response to
immunotherapy. Furthermore, Xu et al. (2021) identified patient groups that would benefit
from immunotherapy by predicting PD-L1 expression levels using a CNN model that
analyzes the tumor microenvironment from histopathological images. These studies
demonstrate that Al has the potential to prevent unnecessary toxicity by enabling early
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prediction of treatment response, personalize treatment strategies, and enhance clinical
decision-making.

6.3. Emerging Trends and Innovative Technologies
6.3.1. Explainable Al (XAI) for Transparent Decision-making

The rapid development of artificial intelligence in recent years has led to the emergence
of increasingly complex models capable of performing tasks with high accuracy. However,
the lack of transparency, limited interpretability, and uncertainty about reliability of these
models, often referred to as "black box A" have raised significant concerns. This
development has led to the emergence of a research area known as Explainable Artificial
Intelligence (XAI).

Recent studies have demonstrated that XAl methods can significantly enhance clinical
trust and model transparency in CRC diagnosis and prognosis. For instance, Byun et al.
(2023) implemented a Grad-CAM visualization technique on a convolutional neural network
trained for histopathological image classification, allowing pathologists to visually confirm
the regions contributing most to the model’s prediction. Similarly, Hiroshima et al. (2022)
used SHAP (SHapley Additive exPlanations) analysis to interpret a radiomics-based survival
prediction model, identifying key imaging features that correlated strongly with poor
prognosis. Moreover, Wulczyn et al. (2023) emphasized that interpretable deep learning
systems not only improve diagnostic confidence but also facilitate regulatory approval by
aligning Al outputs with human-understandable reasoning. These examples highlight how
integrating XAl into clinical Al systems bridges the gap between algorithmic performance
and clinical applicability, promoting safer and more transparent adoption of Al in oncology.

6.3.2. Integration of AI with Endoscopic Robotics and Augmented Reality

The integration of endoscopic robotic systems and augmented reality (AR) technologies
with artificial intelligence significantly increases the accuracy and efficiency of surgical
procedures. For example, Al-powered image processing algorithms enable the automatic
detection of colorectal polyps in endoscopic images, preventing lesions that surgeons might
otherwise miss. Similarly, AR-based systems help guide the surgeon by visualizing the
patient's anatomical structure in real time, which is particularly critical in minimally invasive
surgery where operating space is limited. Combining endoscopic robotic arm systems with
Al-based decision support algorithms both shortens operative time and reduces the risk of
complications. For example, a study conducted in Japan found that the polyp detection rate
with Al-powered robotic endoscopy increased by 15% compared to traditional manual
endoscopy. Such integrations allow surgeons to perform safer and more precise
interventions.

6.3.3. Al-Assisted Personalized Medicine

In the treatment of colorectal cancer, Al-powered personalized medicine utilizes patient
tumor genetics, histopathological characteristics, and lifestyle data to tailor treatment plans
to the individual. For example, in a study conducted by the American Cancer Society, Al
algorithms screened for MSI (microsatellite instability) and KRAS mutations to determine
which patients would respond best to anti-EGFR therapy. Similarly, at a hospital in
Singapore, Al-based analysis identified the risk of recurrence in early-stage colon cancer
patients and implemented intensive monitoring in the high-risk group; this early intervention
increased survival by 12%. In a study conducted in China, deep learning algorithms were
able to classify polyps detected during colonoscopy as malignant with 94% accuracy.
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Furthermore, in a retrospective study in the US, Al-assisted treatment planning optimized
chemotherapy dosages based on patients' liver and kidney function, reducing side effect rates
by 18%. These objective examples demonstrate that Al-powered personalized medicine in
colon cancer treatment both increases treatment efficacy and significantly improves patient
safety.

7. CHALLENGES AND LIMITATIONS
7.1. Data Quality, Imbalance and Standardization Issues

The accuracy of Al models in colorectal cancer research depends on data quality and lack
of standardization. Differences in resolution, color, and labeling across colonoscopy and
histopathological images obtained from different centers limit the generalizability of
algorithms. Furthermore, underrepresentation of rare tumor types in datasets can negatively
impact model performance (Yin et al., 2023).

7.2.Ethical and Regulatory Considerations

The use of Al systems in the diagnosis and treatment of colon cancer presents several
ethical and legal challenges. Confidentiality of patient data, accountability for algorithm
decisions, and regulatory standards in different countries pose obstacles to clinical
application (Wang et al., 2025).

7.3.Lack of Interpretability and Clinician Trust

Because Al models are often considered “black boxes,” gaining clinicians’ trust is
challenging. For example, even if an Al system detects polyp malignancy with high
accuracy, it may not be directly integrated into a treatment plan if the decision-making
mechanism remains unclear (Sikora et al., 2025).

7.4.Computational Cost and Implementation Barriers

Deep learning models operating on colon cancer images require high processing power.
High-resolution image data and large datasets create cost and time constraints for model
training and real-time use. Furthermore, existing hospital infrastructures are not suitable for
integrating Al systems, limiting widespread implementation (Lubell, 2025).

8. FUTURE DIRECTIONS

One of the key future opportunities in colorectal cancer research is to increase the
generalizability of AI models through multicenter collaborations and open datasets.
Combining colonoscopy and histopathology images from different geographic regions and
clinical centers increases data diversity and model accuracy. Furthermore, integrating Al
systems with omics data (genomics, proteomics, metabolomics) allows for more holistic
modeling of tumor biology, enabling more precise patient-specific risk assessments and
treatment plans.

Furthermore, thanks to continuously learning Al systems, algorithms can update
themselves with new patient data and clinical feedback, enabling them to provide adaptive
diagnostic and treatment recommendations. For example, new colonoscopy images and
genetic profiles from multiple hospitals can improve the system's polyp detection and
malignancy prediction performance over time. Furthermore, integrating Al-based decision
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support systems into routine clinical practice helps surgeons and oncologists optimize
treatment plans. This can improve both early diagnosis and personalized treatment
approaches, improving patient safety and survival rates (Kim et al., 2023; Lee et al., 2024;
Zhang et al., 2025).

9. CONCLUSION

Al and deep learning-based analysis methods have made significant progress in the
diagnosis and treatment of colon cancer in recent years. The use of approaches such as big
data analysis, radiomics modeling, and histopathological image classification in clinical
decision-making has enabled more accurate assessment of tumor morphology, genetic
markers, and disease progression. These technological innovations have not only enhanced
diagnostic precision but also allowed for early disease detection, tailored treatment
strategies, and better patient outcomes. Deep learning models, in particular, can predict colon
cancer prognosis with high accuracy when combined with clinical parameters, leading to an
increasingly critical role for Al in oncology applications.

The transformative power of Al is clearly evident in its ability to redefine diagnostic and
prognostic processes limited by classical methods. Through the multimodal integration of
radiological, histopathological, and molecular data, a multidimensional map of tumor
biology can be constructed. For example, Al-powered models have surpassed classical
statistical approaches in areas such as treatment response prediction, recurrence risk analysis,
and survival prediction. These advances have enabled more data-driven, objective, and
patient-centered clinical decisions in colon cancer patients. This has increased both time and
resource efficiency during the treatment process and has positively impacted patient
prognosis.

However, interdisciplinary collaboration is essential for the effective use of Al
applications in medicine. The integration of diverse disciplines such as medicine, computer
engineering, bioinformatics, ethics, and data science enhances both the scientific validity
and clinical usability of models. Studies that combine the domain knowledge of clinical
experts with the algorithmic competence of data scientists strengthen both model accuracy
and interpretability. Furthermore, clearly defining ethical frameworks, data privacy, and
patient consent are essential for the sustainable adoption of Al technologies. Therefore, an
interdisciplinary approach is not only a technical requirement but also a fundamental
requirement for reliable clinical translation.

Moving forward, ensuring that Al systems are explainable, generalizable, and suitable for
clinical integration is a top priority. XAl approaches will enable clinicians to better
understand and confidently implement model decisions. Furthermore, multicenter data
sharing, standardized imaging protocols, and increased large-scale validation studies will
facilitate the performance of models in real-world clinical settings. Using Al in conjunction
with human expertise will enable its integration into clinical decision-making processes,
supporting every stage from diagnosis to treatment.

Al-powered analyses represent not only a technological innovation but also a
paradigmatic shift in colon cancer research. This transformation, extending from diagnosis
to prediction, is paving the way for a more precise, data-driven, and personalized
understanding of oncology, driven by the digitalization of medicine. In the coming period,
with the increasing clinical reliability of Al systems, these technologies will cease to be mere
decision-support tools and become an integral component of healthcare. This new era, where
human and digital intelligence work in harmony, opens the door to a more effective,
predictive, and holistic approach to colon cancer management, both clinically and ethically.
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1. INTRODUCTION
Word representation constitutes a fundamental component of modern natural language
processing, as it enables linguistic units to be transformed into numerical forms that
computational systems can interpret. Rather than treating words as isolated symbols,
contemporary approaches encode them as vectors that inhabit a continuous semantic space.
Within such spaces, words that share syntactic or semantic characteristics tend to appear in
closer proximity, allowing downstream models to exploit these relationships more effectively.
Methods for representing words have traditionally been grouped into three broad categories.
Conventional representations, such as Bag-of-Words and TF-IDF, rely on frequency statistics
and co-occurrence patterns, providing sparse but interpretable features. Distributed
representations—including models like Word2Vec, GloVe and fastText—map words into
dense vector spaces by leveraging contextual information extracted from large corpora, thereby
capturing underlying semantic regularities. More recently, contextual embedding models have
emerged, producing representations that vary dynamically depending on the surrounding text.
These models generate richer semantic signals by integrating the broader linguistic environment
into each token’s encoding. Architectures such as BERT, which applies a bidirectional
Transformer mechanism, exemplify this shift by simultaneously modelling left and right
contexts, achieving substantial improvements over earlier embedding techniques and redefining

standards for semantic and contextual understanding in NLP.

2. WORD REPRESENTATION MODELS

Word representation refers to techniques that transform words into numerical formats suitable
for processing by computational models. A commonly used method is word embedding, where
words are encoded as dense vectors positioned within a continuous vector space. Within this
space, words with similar meanings tend to appear near one another, and the resulting vectors
capture syntactic as well as semantic patterns in the language [1]. This idea—often described
as vector semantics—treats each word as a point in a multidimensional semantic space derived
from the distribution of neighboring terms across large text corpora [2]. Such vector-based
representations, known as embeddings, allow machine learning (ML) models to handle

linguistic information more effectively than traditional frequency-based approaches [3].

A broad spectrum of methods has been proposed for the representation of linguistic information,
progressing from early frequency-based statistical techniques to more advanced distributed and

contextual embedding approaches. As depicted in Figure 1, existing word representation
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methods are commonly classified into three main categories: conventional, distributed, and
contextual models. Conventional approaches, including Bag-of-Words (BoW), n-gram models,
and term frequency—inverse document frequency (TF-IDF), represent textual data through
surface-level frequency distributions and co-occurrence statistics. In contrast, distributed
representation models—such as Latent Semantic Analysis (LSA), Latent Dirichlet Allocation
(LDA), Word2Vec, GloVe, and fastText—encode words into dense, low-dimensional vector
spaces that capture latent semantic relationships and structural regularities within large corpora
[2], [4]. More recently, contextualized models like ELMo, GPT, and BERT have further
advanced word representation by generating dynamic embeddings that vary according to
contextual usage, thereby enabling more precise semantic interpretation and improved

performance across downstream NLP tasks [5].

Word Representation
Models —

Distributed model \»

TF-IDF

Figure 1. Categorization of word representation models in natural language processing.
2.1. Conventional word embedding

Conventional word embedding, also called count-based/frequency-based models, is categorized

into a BoW, n-gram, and term TF-IDF models [3].

Bag-of~Words (BoW)

The BoW model is a widely used representation method in which an object (e.g. a document or
image) is represented as a discrete set of elements, known as words or visual words, regardless
of their order. Each object is encoded as a histogram of these words, summarizing the frequency
of occurrence. In image analysis, key points are often quantized into visual words using
clustering algorithms such as K-means, whereas in text, words are counted directly. Although
simple, the BoW representation effectively captures the presence and frequency of features,

making it useful for tasks like object categorization and document classification [6], [7].
n-gram

N-grams are sets of n consecutive words or characters extracted from a text, where n is usually

one, two, or three. One-letter n-grams are called unigrams (or monograms), two-letter n-grams
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are called bigrams (or digrams) and three-letter n-grams are called trigrams [8]. The order-n
parameters of an n-gram model can be viewed as forming the transition matrix of a Markov
model, where the states correspond to sequences of n — [ words. To represent words
numerically, continuous vector representations xwx wxw are first generated for each word
www in the dictionary DDD, often using models such as Skip-gram or GloVe, trained
efficiently over large unlabeled corpora [9], [10].. These vector representations enable n-gram

models to leverage both frequency-based and semantic information for NLP tasks.

Term Frequency-Inverse Document Frequency

TF-IDF is a numerical measure used to evaluate the significance of a word within a specific
document relative to a broader collection of documents. It takes into account both how
frequently a word appears in the document (term frequency) and how uncommon it is in the
broader corpus (inverse document frequency). Words with high TF-IDF values are considered
more informative, making this method useful for tasks such as keyword extraction, search result

ranking, and document categorisation. [11], [12].
2.2. Distributed Word Embedding Models

Distributed word embedding techniques encode words as dense, continuous vectors situated in
a multidimensional semantic space, enabling the representation of syntactic and semantic
relationships based on contextual usage within large corpora. These models aim to produce rich
and informative vector representations that capture linguistic patterns and improve the
performance of natural language processing applications. Numerous distributed embedding
methods have been introduced in the literature; among them, five widely referenced
approaches—Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), Word2Vec,
GloVe and fastText—are outlined in the following subsections to demonstrate different

strategies for modeling semantic and contextual information in text.

Latent Semantic Analysis (LSA)

LSA is a statistical method designed to uncover hidden associations between words and
documents within a corpus. It works by constructing a term—document matrix and applying
Singular Value Decomposition (SVD) to project words and documents into a reduced-
dimensional latent semantic space, where terms with similar meanings appear closer to one
another [2], [13]. By capturing word co-occurrence patterns, LSA enhances tasks such as

similarity measurement and information retrieval. However, its reliance on linear algebraic
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transformations instead of probabilistic modeling limits its ability to represent more complex

semantic and syntactic structures present in modern datasets [4].

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) is a generative probabilistic model designed for
dimensionality reduction and topic discovery in large text corpora. It models each document as
a mixture of latent topics, with each topic represented by a probability distribution over words
[14]. Unlike earlier models, LDA provides a formal probabilistic framework that enables
generalization to unseen documents. However, despite its theoretical strengths, LDA becomes
computationally expensive when applied to large-scale datasets [15] and remains challenging

to capture complex semantic and syntactic structures effectively [4].
Word2Vec

Word2Vec is a neural representation framework that generates dense vector embeddings of
words by exploiting their distributional patterns within large-scale text corpora [13], [15]. The
method captures semantic and syntactic regularities by mapping words with similar meanings
to nearby locations within a continuous vector space [1], [16]. As shown in Figure 2, Word2Vec
consists of two foundational architectures: Continuous Bag-of-Words (CBOW) and Skip-gram.
In the CBOW model, the network predicts a missing target word by using its surrounding
context, whereas the Skip-gram model performs the inverse operation by estimating the context
words from a given central Word [15], [16]. CBOW is generally more computationally efficient
for extensive datasets, while Skip-gram tends to yield superior performance for infrequent or
rare words. The embeddings produced by Word2Vec are static, meaning that each lexical item
is assigned a single vector representation that does not vary across different contexts [2].
Through this design, Word2Vec effectively models distributional characteristics of language
and supports a variety of downstream NLP applications, including semantic similarity, analogy

detection, and clustering.
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Figure 2. CBOW and Skip-gram Model [15]

Global Vectors for Word Representation (GloVe)

Global Vectors for Word Representation (GloVe) is an unsupervised word representation model
that generates dense vector embeddings by leveraging global word co-occurrence statistics from
a corpus. Unlike models that rely solely on local context, GloVe captures the overall
distributional information across the entire corpus, allowing the resulting word vectors to reflect
semantic relationships and meaning. The model’s name, Global Vectors, emphasizes its use of

corpus-wide statistical information to construct meaningful word embeddings [3], [13]

fastText

fastText is a word embedding model that incorporates subword information through character
n-grams, enabling it to capture morphological features and local word order. This design allows
the model to generate vector representations not only for known words but also for out-of-
vocabulary (OOV) terms [3]. Each word is mapped to a shared low-dimensional space as a d-
dimensional vector, reflecting both syntactic and semantic similarity. Unlike traditional
embedding models that represent each word as a single token, fastText decomposes words into
overlapping character n-grams and learns vector representations for these subword units [17].
By composing word vectors from their constituent n-grams, fastText effectively handles rare

and unseen words, making it particularly suitable for morphologically rich languages [5].
2.3. Contextual Word Embeddings

Contextual word embeddings generate dynamic vector representations for words based on their
surrounding context, in contrast to static embeddings such as Word2Vec or GloVe [18]. By

capturing richer semantic and syntactic information, these embeddings have significantly
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improved performance across various NLP tasks. Understanding context-dependent variation
in word meanings is a key aspect of human language comprehension, supported by the lexicon.
Contextualized models provide better word embeddings than static models and combining

embeddings from different models can further enhance task performance [19].

Contextual word embedding models can be broadly classified into auto-regressive and auto-
encoding approaches. Notable examples include ELMo (Embeddings from Language Models),
GPT and BERT each employing different architectures to generate context-aware word

representations [3].

Embeddings From Language Models (ELMo)

Embeddings from Language Models (ELMo) generates context-dependent word embeddings
that captures both semantic and syntactic information [20]. Unlike conventional static
embeddings, ELMo representations are derived from the entire input sentence, allowing word
vectors to adapt based on surrounding context. In ELMo, words within the same sentence
become more similar in higher layers as context-specificity increases, enhancing the model’s

ability to capture nuanced meanings [21].

Generative Pre Training (GPT)

GPT is based on a unidirectional Transformer architecture that produces context-sensitive word
representations primarily optimized for natural language generation tasks [20]. Owing to its
autoregressive design, the model generates each token by conditioning on previously generated
tokens, which allows it to effectively model long-range dependencies within textual sequences.
GPT is initially trained on large-scale unlabeled corpora, enabling it to learn general linguistic
patterns that can be transferred across diverse tasks. This pre-training strategy provides
substantial flexibility, as the target task domain does not need to closely align with the pre-
training data. Subsequently, the model can be fine-tuned for task-specific applications—such
as text generation, classification, or question answering—by updating its parameters to

optimize downstream performance [21].

Bidirectional Encoder Representations from Transformers (BERT)

BERT represents a major advancement in contextual word embedding methods. It employs a
bidirectional Transformer architecture to model both left and right contexts simultaneously,
enabling the generation of deep, context-dependent word embeddings that capture subtle

semantic and syntactic nuances [22]. Unlike unidirectional models, BERT learns continuous
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context representations, allowing it to distinguish fine-grained variations in word meaning

across different usages [19].

In BERT, word embeddings evolve through multiple Transformer layers: lower layers capture
general lexical and syntactic information, whereas higher layers produce context-specific
semantic representations, in which words within the same sentence become increasingly
dissimilar yet remain more related than randomly sampled words [21]. The model is pre-trained
on large unlabeled corpora using Masked Language Modeling (MLM) and Next Sentence
Prediction (NSP) objectives, which enable the learning of rich bidirectional dependencies from
raw text. Fine-tuning on labeled datasets further adapts these embeddings for downstream NLP
tasks such as question answering, sentiment analysis, or text classification [22]. Owing to its
multi-layer bidirectional Transformer encoder, BERT outperforms earlier contextual models
such as GPT and ELMo, setting a new standard for semantic and contextual representation in

NLP [20].
CONCLUSION

The present era is defined by the rise of contextual models, such as ELMo, GPT and BERT.
These models represent a profound paradigm shift because they generate dynamic, context-
aware embeddings. This breakthrough allows models to understand the subtle nuances of word

meaning that depend on context, mirroring human linguistic comprehension.

These dynamic, context-aware representations will be the basis for the next generation of NLP
capabilities in the future. Researchers are leveraging these deep, bidirectional dependencies to
solve increasingly complex language tasks. This solidifies the contextual approach as an

indispensable foundation for future advancements in semantic and contextual representation.
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