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Fikret OKUTUCU, Koray ÜLGEN 1.INTRODUCTION 

The theory of curves has been the subject of numerous areas' and 
geometry's recent investigations. Examining various geometric 
properties in Euclidean space using the theory of curves, which is the 
basis of differential geometry, and the Serret-Frenet frame of a curve, 
is a method of dealing with many geometric structures. Thus, Euclidean 
geometry has added many concepts to itself by walking on the theory 
of curves. These are topics such as the Bertrand curve, involute-evolute 
curve, helix and slant helix etc.  In fact, the theory of curves and 
obtaining various geometric models of a curve using the Serret-Frenet 
frame have been used not only in geometry (and therefore mathematics) 
but also in different fields such as physics, biology and engineering. On 
the other hand, the theory of curves and the analysis of various 
geometric models in different spaces, namely Lorentz and Minkowski 
spaces, using the Serret-Frenet frame of a curve and presenting new 
theories are the methods followed by differential geometry. In 
particular, the fact that the curves in the structures of Lorentz and 
Minkowski spaces and their Serret-Frenet frame contain more special 
situations than Euclidean space, allowing for various situations and 
more study areas. From this point of view, geometry offers a 
tremendous field of study.  
Many researchers who specifically research the literature well can see 
that helix and slant helix issues have been proven by building many 
theories in Lorentz and Minkowski spaces. Although the subject of slant 
helices has been discussed in the literature, it has not been studied in a 
comprehensive manner. This lack of detailed treatment forms the main 
motivation of the present study. Slant helices were first introduced as a 
generalization of classical helices. -k  and ( ),k m − type slant helices 

have been added to the literature in recent years, after the slant helices. 
Akgün [1] introduced the concept of new kind Frenet curves within the 
frame of Minkowski space. Ali and Önder [2] provided 
characterizations for rectifying space-like curves in Minkowski space-
time. Bulut and Eker [3] developed the theory of -k  and ( ),k m − type 

slant helices with respect to the Lorentz-Darboux frame. The geometry 
of special helices on equiform differential geometry of timelike curves 
was discussed by Bulut [4]. Bulut and Tartık [5] studied (k,m)-type slant 
helices by employing the parallel transport frame in Euclidean 4-space. 
The structure of slant helices relative to the Ed-frame in Minkowski 4-
space was analyzed by Bulut [6]. Bulut and Bektaş [7] investigated 
special helices arising from the equiform differential geometry of 
spacelike curves in Minkowski space-time. Bulut [8] formulated non-
linear differential equations based on the Darboux vector approach. 
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Akgün [1] introduced the concept of new kind Frenet curves within the 
frame of Minkowski space. Ali and Önder [2] provided 
characterizations for rectifying space-like curves in Minkowski space-
time. Bulut and Eker [3] developed the theory of -k  and ( ),k m − type 

slant helices with respect to the Lorentz-Darboux frame. The geometry 
of special helices on equiform differential geometry of timelike curves 
was discussed by Bulut [4]. Bulut and Tartık [5] studied (k,m)-type slant 
helices by employing the parallel transport frame in Euclidean 4-space. 
The structure of slant helices relative to the Ed-frame in Minkowski 4-
space was analyzed by Bulut [6]. Bulut and Bektaş [7] investigated 
special helices arising from the equiform differential geometry of 
spacelike curves in Minkowski space-time. Bulut [8] formulated non-
linear differential equations based on the Darboux vector approach. 

Camcı, İlarslan, Kula, and Hacısalihoğlu [9] examined harmonic 
curvatures and generalized helices in four-dimensional Euclidean 
space. Düldül [10] analyzed vector fields and planes in ℝ⁴ that act 
analogously to the Darboux vector. Izumiya and Takeuchi [11] 
introduced novel types of special curves and associated developable 
surfaces. Keleş, Yüksel Perktaş, and Kılıç [12] explored the properties 
of biharmonic curves in LP-Sasakian manifolds. O’Neill [13] provided 
a comprehensive treatment of semi-Riemannian geometry with 
significant applications to the theory of relativity. Öztürk, Gürpınar, and 
Arslan [14] proposed a novel characterization of curves within 
Euclidean 4-space. Walrave [15] conducted an extensive study on 
curves and surfaces in Minkowski space through his doctoral 
dissertation. Williams and Stein [16] discussed a triple product of 
vectors within four-dimensional space. Yaylı, Gök, and Hacısalihoğlu 
[17] introduced extended rectifying curves as a new class of modified 
Darboux vectors. Yılmaz and Bektaş [18] investigated ( ),k m − type 

slant helices associated with partially null and pseudo null curves in 
Minkowski space. Yılmaz and Bektaş [19] further contributed to the 
understanding of slant helices of (k,m)-type in four-dimensional 
Euclidean space. 
In this paper, we explore the properties of  -k type slant helices in 4-
dimensional Minkowski space ℝ1

4, 1B  is time-like vector, focusing on 
the case where the playing role Darboux vector. This vector plays role 
as the Darboux vector in 4-dimensional Minkowski space ℝ1

4, and using 
in the geometric characterization of slant helices. We also derive non-
linear equations which provided several characterizations of -k type 
slant helices of curves in which the vector 1B is time-like, in accordance 
with the Frenet frame fields associated. Furthermore, we offer an 
analysis of the curvature structure of these slant helices, aiming to 
deepen the understanding of their behavior within Lorentzian geometry. 
The results presented here contribute to the broader understanding of 
curve theory in Minkowski 4-space and open the door to further 
exploration of -k type slant helices under various geometric 
constraints. Additionally, numerical examples are provided to illustrate 
the applications of the theoretical results. The figures are obtained using 
the computed values of the curvatures. In Examples 1 and 2, unit speed

1B  is time-like curves are considered, and their curvatures and related 
invariants are explicitly computed. Using these values, the 
corresponding nonlinear differential equations with the given 
coefficients are solved. Approximate solution curves for Examples 1 
and 2 are then drawn and visualized in four-dimensional space using 
the R programming language. In both examples, the objective is to 
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demonstrate the applicability of the theoretical findings, particularly the 
solutions of the nonlinear differential equations associated with the 
curvature functions, to specific 1B is time-like curves and their 
visualization in higher-dimensional spaces. 

 
2.GENERAL PROPERTIES OF METHOD 

In this part, we introduced some basic definition for Minkowski space. 
The Minkowski space ℝ1

4 is the standard vector space equipped with an 
indefinite flat metric given by:  

 
where  is a rectangular coordinate system of  ℝ1

4 . A 
vector  in ℝ1

4 is called a space-like, time-like or null (light-like), if 
holds  ,  or  ( ) respectively. The 
norm of the vector  is given by . if  , then 
two vectors,  and  are said to be orthogonal. If all of the velocity 
vectors  associated with an arbitrary curve  are space-
like, time-like, or null, then the curve can be respectively space-like, 
time-like, or null. Let  be the moving Frenet frame along 
the curve  in ℝ1

4 . Then the vector fields  are the 
tangent, the principal normal, the first binormal and the second 
binormal vector fields respectively. Let  be a space-like curve in ℝ1

4, 
parametrised by the arc length function of . The following Lemma 1 
follow for the time-like curve  in [15]. 
Lemma 1. Let the vector N  be space-like and 1B  be time-like. In this 
instance,  is a time-like curve with Frenet equations    

1

1 2 1

1 2 3 2

2 3 1

T k N
N k T k B

B k N k B

B k B

 =
 = − +

 = +

 =

                                                                                     (1) 

(
1
) 
 
 

for which there is only one Frenet frame  where  and 
 are mutually orthogonal vectors satisfying the equations 

2 2 1 1, , , 1  and , 1.T T N N B B B B = = =  = −   Recall that the 
functions 𝑘𝑘1 = 𝑘𝑘1(𝑠𝑠), 𝑘𝑘2 = 𝑘𝑘2(𝑠𝑠) and 𝑘𝑘3 = 𝑘𝑘3(𝑠𝑠) are called the first, 
second and third curvature of the time-like curve 𝛼𝛼(𝑠𝑠) respectively and 
we will assume throughout this work that all the three curvatures satisfy 
𝑘𝑘𝑖𝑖(𝑠𝑠) ≠ 0, 1 ≤ 𝑖𝑖 ≤ 3 in [15]. 
Let us set that , , , .  
Definition 1. A time-like curve 𝛾𝛾(𝑠𝑠) parametrized by arc-length 𝑠𝑠 with 
Frenet frame {𝑉𝑉1, 𝑉𝑉2, 𝑉𝑉3, 𝑉𝑉4}  (or with Darboux vector fields  
{𝐷𝐷1, 𝐷𝐷2, 𝐷𝐷3, 𝐷𝐷4} ) in Minkowski space ℝ1

4 is called a -k type slant helix 
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(or is called a 𝑘𝑘-type Darboux slant helix) for 𝑘𝑘 ∈ {1,2,3,4} provided 
that the subsequent holds true for  

〈𝑉𝑉𝑘𝑘, 𝐔𝐔〉 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (𝑜𝑜𝑜𝑜  〈𝐷𝐷𝑘𝑘, 𝐔𝐔〉 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
and there is a non-zero fixed vector 𝐔𝐔 ∈ ℝ1

4   𝑖𝑖𝑖𝑖 [18]. In this section, we 
define Darboux vector fields by using Lemma along a regular curve in 
ℝ1

4 . By using 𝑘𝑘 −type slant helices we obtain some non-linear first 
order differential equations. Let 𝛾𝛾 be a unit speed curve as given in the 
Lemma and {𝑇𝑇, 𝑁𝑁, 𝐵𝐵1, 𝐵𝐵2} be the Frenet frame along the curve 𝛾𝛾 where 
the curvatures 𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3 are non-zero everywhere. Now we can define 
following vector fields along 𝛾𝛾:  

     

𝐷𝐷1 = 𝐵𝐵2
𝐷𝐷2 = 𝑘𝑘2𝑇𝑇 + 𝑘𝑘1𝐵𝐵1
𝐷𝐷3 = 𝑘𝑘3𝑁𝑁 + 𝑘𝑘2𝐵𝐵2
𝐷𝐷4 = −𝑇𝑇

                                                      (2) 

where {𝐷𝐷1, 𝐷𝐷2, 𝐷𝐷3, 𝐷𝐷4} is linearly independent along 𝛾𝛾 in [1]. 
Definition 2. Let 𝛾𝛾(𝑠𝑠) be an ℝ1

4 curve. If the position vector of 𝛾𝛾(𝑠𝑠) is 
always in the orthogonal complement of its principal normal vector 
field, it is referred to as a rectifying curve; if it is always in the 
orthogonal complement of its first binormal vector field, it is referred 
to as an osculating curve of the first sort in [14]. 

 
2.1.NON-LINEAR DIFFERENTIAL EQUATIONS OF K-TYPE SLANT 
HELICES  
 
In this section, we calculate non-linear equation according to  Frenet 
vectors and curvatures of curves in Minkowski space ℝ1

4. 
Theorem 1. Assume that 𝛾𝛾 is a curve that the vector N  be space-like 
and 1B  be time-like with a Frenet frame of {𝑇𝑇, 𝑁𝑁, 𝐵𝐵1, 𝐵𝐵2}  in ℝ1

4. There 
is the non-linear equation,  

1
𝑘𝑘3

2 𝑦𝑦′2 − 𝑦𝑦2 − 𝜇𝜇 = 0 

if the curve γ is a 1-type slant helix and a 1-type Darboux slant helix in 
ℝ1

4 where    and 𝜇𝜇 = 𝐾𝐾2

𝑐𝑐1
2 − 1 because  are constants.   

Proof.  In ℝ1
4 , let 𝛾𝛾 = 𝛾𝛾(𝑠𝑠)   be a 1-type slant helix and a 1-type 

Darboux slant helix. If  𝐔𝐔 is a definite direction that is not zero, then 
                        〈𝑇𝑇, 𝐔𝐔〉 = 𝑐𝑐1                                                         (3) 
is a constant along the curve 𝛾𝛾 = 𝛾𝛾(𝑠𝑠). By setting (2) in (3), we find  
         〈𝐷𝐷4, 𝐔𝐔〉 = −𝑐𝑐1. 
Differentiating (3) with respect to 𝑠𝑠, we get  
                    〈𝑇𝑇′, 𝐔𝐔〉 = 0.                                                                     (4) 
 Using equation (1), we find the following equation:  

𝑘𝑘1〈𝑁𝑁, 𝐔𝐔〉 = 0 
 and 𝑘𝑘1 ≠ 0, we obtain    
                   〈𝑁𝑁, 𝐔𝐔〉 = 0.                                                                     (5)                                       
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Differentiating (5) with respect to 𝑠𝑠 and using equations (2) and (3), we 
have  

−𝑘𝑘1𝑐𝑐1 + 𝑘𝑘2〈𝐵𝐵1, 𝐔𝐔〉 = 0 
it follows that    
         〈𝐵𝐵1, 𝐔𝐔〉 = 𝑘𝑘1

𝑘𝑘2
𝑐𝑐1.                                                                     (6)     

Differentiating (6) with respect to 𝑠𝑠 and using (1) and (5), we have  

                                               〈𝐵𝐵2, 𝐔𝐔〉 = 1
𝑘𝑘3

(𝑘𝑘1
𝑘𝑘2

)
′

𝑐𝑐1.                      (7)                              

𝐔𝐔 a constant field, we can write 
𝐔𝐔 = 𝑢𝑢1𝑇𝑇 + 𝑢𝑢2𝑁𝑁 + 𝑢𝑢3𝐵𝐵1 + 𝑢𝑢4𝐵𝐵2                                              (8)                              
 and for 𝐾𝐾 is a constant  
〈𝐔𝐔, 𝐔𝐔〉 = 𝐾𝐾2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.                                                         (9)                               
This suggests that the subspace spanned by {𝑇𝑇, 𝐵𝐵1, 𝐵𝐵2} contains the unit 
vector 𝐔𝐔 . Using equation (1), we obtain the components of  𝐔𝐔  as 
follows:  
 

𝑢𝑢1 = 〈𝑇𝑇, 𝐔𝐔〉 = 𝑐𝑐1
𝑢𝑢2 = 〈𝑁𝑁, 𝐔𝐔〉 = 0

𝑢𝑢3 = 〈𝐵𝐵1, 𝐔𝐔〉 = − 𝑘𝑘1
𝑘𝑘2

𝑐𝑐1

𝑢𝑢4 = 〈𝐵𝐵2, 𝐔𝐔〉 = 𝑐𝑐1
𝑘𝑘3

(𝑘𝑘1
𝑘𝑘2

)
′

𝑐𝑐1.

 

 Thus, we have 

 𝐔𝐔 = 𝑐𝑐1𝑇𝑇 − 𝑘𝑘1
𝑘𝑘2

𝑐𝑐1𝐵𝐵1 + 𝑐𝑐1
𝑘𝑘3

(𝑘𝑘1
𝑘𝑘2

)
′

𝐵𝐵2.                                           (10)                                 

 If we standard scalar product both sides of equation (10) by 𝐔𝐔, we find  

                             𝐾𝐾2 = 𝑐𝑐1
2 − 𝑐𝑐1

2 (𝑘𝑘1
𝑘𝑘2

)
2

+ 𝑐𝑐12

𝑘𝑘3
2 ((𝑘𝑘1

𝑘𝑘2
)

′
)

2
.                  (11)                        

 If we divide both sides of equation (11) by 𝑐𝑐1
2 , we have  𝐾𝐾2

𝑐𝑐1
2 − 1 =

− (𝑘𝑘1
𝑘𝑘2

)
2

+ 1
𝑘𝑘3

2 ((𝑘𝑘1
𝑘𝑘2

)
′
)

2
. If 𝜇𝜇 = 𝐾𝐾2

𝑐𝑐1
2 − 1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is taken, we obtain  

1
𝑘𝑘3

2 ((𝑘𝑘1
𝑘𝑘2

)
′
)

2
− (𝑘𝑘1

𝑘𝑘2
)

2
− 𝜇𝜇 = 0.  If 𝑦𝑦 = 𝑘𝑘1

𝑘𝑘2
 is taken, we obtain the 

following non-linear equation,  

                      2 2
2
3

1 0.y y
k

 − − =                                                   (12)                                  

The proof is completed.  
Theorem 2.  Let 𝛾𝛾 is a curve that the vector N  be space-like and 1B  be 
time-like in ℝ1

4 with Frenet frame {𝑇𝑇, 𝑁𝑁, 𝐵𝐵1, 𝐵𝐵2}. If the curve 𝛾𝛾 is a 2-
type slant helix and 2-type Darboux slant helix in ℝ1

4, then we obtain 
the following non-linear equation,  

𝑦𝑦′2 − 2𝑘𝑘2
𝑘𝑘1

𝜀𝜀′𝑦𝑦′ + (𝑘𝑘3
2 + 𝑘𝑘2

2𝑘𝑘3
2

𝑘𝑘1
2 ) 𝑦𝑦2 + [𝑘𝑘2

2

𝑘𝑘1
2 𝜀𝜀′2 − 𝜇𝜇 𝑘𝑘3

2

𝑘𝑘1
2 𝜀𝜀′2] = 0 
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Differentiating (5) with respect to 𝑠𝑠 and using equations (2) and (3), we 
have  

−𝑘𝑘1𝑐𝑐1 + 𝑘𝑘2〈𝐵𝐵1, 𝐔𝐔〉 = 0 
it follows that    
         〈𝐵𝐵1, 𝐔𝐔〉 = 𝑘𝑘1

𝑘𝑘2
𝑐𝑐1.                                                                     (6)     

Differentiating (6) with respect to 𝑠𝑠 and using (1) and (5), we have  

                                               〈𝐵𝐵2, 𝐔𝐔〉 = 1
𝑘𝑘3

(𝑘𝑘1
𝑘𝑘2

)
′

𝑐𝑐1.                      (7)                              

𝐔𝐔 a constant field, we can write 
𝐔𝐔 = 𝑢𝑢1𝑇𝑇 + 𝑢𝑢2𝑁𝑁 + 𝑢𝑢3𝐵𝐵1 + 𝑢𝑢4𝐵𝐵2                                              (8)                              
 and for 𝐾𝐾 is a constant  
〈𝐔𝐔, 𝐔𝐔〉 = 𝐾𝐾2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.                                                         (9)                               
This suggests that the subspace spanned by {𝑇𝑇, 𝐵𝐵1, 𝐵𝐵2} contains the unit 
vector 𝐔𝐔 . Using equation (1), we obtain the components of  𝐔𝐔  as 
follows:  
 

𝑢𝑢1 = 〈𝑇𝑇, 𝐔𝐔〉 = 𝑐𝑐1
𝑢𝑢2 = 〈𝑁𝑁, 𝐔𝐔〉 = 0

𝑢𝑢3 = 〈𝐵𝐵1, 𝐔𝐔〉 = − 𝑘𝑘1
𝑘𝑘2

𝑐𝑐1

𝑢𝑢4 = 〈𝐵𝐵2, 𝐔𝐔〉 = 𝑐𝑐1
𝑘𝑘3

(𝑘𝑘1
𝑘𝑘2

)
′

𝑐𝑐1.

 

 Thus, we have 

 𝐔𝐔 = 𝑐𝑐1𝑇𝑇 − 𝑘𝑘1
𝑘𝑘2

𝑐𝑐1𝐵𝐵1 + 𝑐𝑐1
𝑘𝑘3

(𝑘𝑘1
𝑘𝑘2

)
′

𝐵𝐵2.                                           (10)                                 

 If we standard scalar product both sides of equation (10) by 𝐔𝐔, we find  

                             𝐾𝐾2 = 𝑐𝑐1
2 − 𝑐𝑐1

2 (𝑘𝑘1
𝑘𝑘2

)
2

+ 𝑐𝑐12

𝑘𝑘3
2 ((𝑘𝑘1

𝑘𝑘2
)

′
)

2
.                  (11)                        

 If we divide both sides of equation (11) by 𝑐𝑐1
2 , we have  𝐾𝐾2

𝑐𝑐1
2 − 1 =

− (𝑘𝑘1
𝑘𝑘2

)
2

+ 1
𝑘𝑘3

2 ((𝑘𝑘1
𝑘𝑘2

)
′
)

2
. If 𝜇𝜇 = 𝐾𝐾2

𝑐𝑐1
2 − 1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is taken, we obtain  

1
𝑘𝑘3

2 ((𝑘𝑘1
𝑘𝑘2

)
′
)

2
− (𝑘𝑘1

𝑘𝑘2
)

2
− 𝜇𝜇 = 0.  If 𝑦𝑦 = 𝑘𝑘1

𝑘𝑘2
 is taken, we obtain the 

following non-linear equation,  

                      2 2
2
3

1 0.y y
k

 − − =                                                   (12)                                  

The proof is completed.  
Theorem 2.  Let 𝛾𝛾 is a curve that the vector N  be space-like and 1B  be 
time-like in ℝ1

4 with Frenet frame {𝑇𝑇, 𝑁𝑁, 𝐵𝐵1, 𝐵𝐵2}. If the curve 𝛾𝛾 is a 2-
type slant helix and 2-type Darboux slant helix in ℝ1

4, then we obtain 
the following non-linear equation,  

𝑦𝑦′2 − 2𝑘𝑘2
𝑘𝑘1

𝜀𝜀′𝑦𝑦′ + (𝑘𝑘3
2 + 𝑘𝑘2

2𝑘𝑘3
2

𝑘𝑘1
2 ) 𝑦𝑦2 + [𝑘𝑘2

2

𝑘𝑘1
2 𝜀𝜀′2 − 𝜇𝜇 𝑘𝑘3

2

𝑘𝑘1
2 𝜀𝜀′2] = 0 

where   and 𝜇𝜇 = 𝐾𝐾2

𝑐𝑐2
2 − 1,   are constants. 

Proof. In ℝ1
4, let 𝛾𝛾 = 𝛾𝛾(𝑠𝑠)  be a 2-type slant helix and a 2-type Darboux 

slant helix. If  𝐔𝐔 is a definite direction that is not zero, then  
 

〈𝑁𝑁, 𝐔𝐔〉 = 𝑐𝑐2                                                                        (13)                                                                                           
 

is a constant along the curve 𝛾𝛾 = 𝛾𝛾(𝑠𝑠). Differentiating (13) with respect 
to 𝑠𝑠, we get  
 

 〈𝑁𝑁′, 𝐔𝐔〉 = 0.                                                                      (14)                                                                     
 

From 𝛾𝛾 = 𝛾𝛾(𝑠𝑠) is a 2-type Darboux slant helix, we can write  
 

〈𝐷𝐷2, 𝐔𝐔〉 = 𝑐𝑐5.                                                          (15)                                                                                     
 

By setting (1) in (14), we find the following equation:  
           −𝑘𝑘1〈𝑇𝑇, 𝐔𝐔〉 + 𝑘𝑘2〈𝐵𝐵1, 𝐔𝐔〉 = 0                                    (16)                                                            

 
 and substituting (15) to (1), we obtain as below:  
 
              𝑘𝑘2〈𝑇𝑇, 𝐔𝐔〉 + 𝑘𝑘1〈𝐵𝐵1, 𝐔𝐔〉 = 𝑐𝑐5.                                  (17)                                                      

 
 By setting (16) in (17), we find  

〈𝑇𝑇, 𝐔𝐔〉 = ( 𝑘𝑘2
𝑘𝑘1

2 + 𝑘𝑘2
2) 𝑐𝑐5 

it follows that  
 

                                〈𝐵𝐵1, 𝐔𝐔〉 = ( 𝑘𝑘1
𝑘𝑘1

2+𝑘𝑘2
2) 𝑐𝑐5.             (18)                                                         

 
Differentiating (18) with respect to 𝑠𝑠 , we get 〈𝐵𝐵2, 𝐔𝐔〉 = − (𝑘𝑘2

𝑘𝑘3
) 𝑐𝑐2 +

1
𝑘𝑘3

( 𝑘𝑘1
𝑘𝑘1

2+𝑘𝑘2
2)

′
𝑐𝑐5.  𝐔𝐔 a constant field,  

we can write  
 

              𝐔𝐔 = 𝑢𝑢1𝑇𝑇 + 𝑢𝑢2𝑁𝑁 + 𝑢𝑢3𝐵𝐵1 + 𝑢𝑢4𝐵𝐵2                             (19) 
and for 𝐾𝐾 is a constant  〈𝐔𝐔, 𝐔𝐔〉 = 𝐾𝐾2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. This suggests that 
the subspace spanned by {𝑇𝑇, 𝐵𝐵1, 𝐵𝐵2} contains the unit vector 𝐔𝐔. Using 
equation (1), we obtain the components of  𝐔𝐔 as follows:  
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𝑢𝑢1 = 〈𝑇𝑇, 𝐔𝐔〉 = ( 𝑘𝑘2
𝑘𝑘1

2+𝑘𝑘2
2) 𝑐𝑐5

𝑢𝑢2 = 〈𝑁𝑁, 𝐔𝐔〉 = 𝑐𝑐2

𝑢𝑢3 = 〈𝐵𝐵1, 𝐔𝐔〉 = − ( 𝑘𝑘1
𝑘𝑘1

2+𝑘𝑘2
2) 𝑐𝑐5

𝑢𝑢4 = 〈𝐵𝐵2, 𝐔𝐔〉 = − (𝑘𝑘2
𝑘𝑘3

) 𝑐𝑐2 + 1
𝑘𝑘3

( 𝑘𝑘1
𝑘𝑘1

2+𝑘𝑘2
2)

′
𝑐𝑐5.

                         (20)                     

 
By setting (20) in (19), it can be written as 𝐔𝐔 = ( 𝑘𝑘2

𝑘𝑘1
2+𝑘𝑘2

2) 𝑐𝑐5𝑇𝑇 + 𝑐𝑐2𝑁𝑁 −

( 𝑘𝑘1
𝑘𝑘1

2+𝑘𝑘2
2) 𝑐𝑐5𝐵𝐵1 + (− (𝑘𝑘2

𝑘𝑘3
) 𝑐𝑐2 + 1

𝑘𝑘3
( 𝑘𝑘1

𝑘𝑘1
2+𝑘𝑘2

2)
′

𝑐𝑐5) 𝐵𝐵2. If we standard scalar 

product both sides of the last equation by 𝐔𝐔 and 𝑐𝑐5 = 𝑘𝑘1
𝜀𝜀′ 𝑐𝑐2 where 𝜀𝜀′ =

( 𝑘𝑘2
𝑘𝑘1

2+𝑘𝑘2
2)

′
, we find  

 

𝐾𝐾2 = 𝑘𝑘1
2

𝜀𝜀′2 ( 𝑘𝑘1
𝑘𝑘1

2 + 𝑘𝑘2
2)

2
𝑐𝑐2

2 + 𝑐𝑐2
2 + ( 𝑘𝑘1

2

𝑘𝑘1
2 + 𝑘𝑘2

2)
2
 

                                                             𝑐𝑐2
2

𝜀𝜀′2 (− 𝑘𝑘2
𝑘𝑘3

+     𝑘𝑘1

𝑘𝑘3𝜀𝜀′( 𝑘𝑘1
𝑘𝑘12+𝑘𝑘22

)
′)

2

𝑐𝑐2
2. (21)                

 

If we divide both sides of equation (21) by 𝑐𝑐2
2 and 𝜇𝜇 = 𝐾𝐾2

𝑐𝑐2
2 − 1 are taken, 

we obtain the following non-linear equation,  

𝑦𝑦′2 − 2𝑘𝑘2
𝑘𝑘1

𝜀𝜀′𝑦𝑦′ + (𝑘𝑘3
2 + 𝑘𝑘2

2𝑘𝑘3
2

𝑘𝑘1
2 ) 𝑦𝑦2 + [𝑘𝑘2

2

𝑘𝑘1
2 𝜀𝜀′2 − 𝜇𝜇 𝑘𝑘3

2

𝑘𝑘1
2 𝜀𝜀′2] = 0. 

The proof is completed.  
Corollary 1.  Let 𝛾𝛾 is a curve that the vector N  be space-like and 1B  
be time-like in ℝ1

4 with non-zero curvatures 𝑘𝑘1, 𝑘𝑘2 and 𝑘𝑘3. If the curve 
𝛾𝛾 is a 2-type slant helix and 2-type Darboux slant helix in ℝ1

4, then the 
following holds  

𝑐𝑐2
𝑐𝑐5

= 1
𝑘𝑘1

( 𝑘𝑘2
𝑘𝑘1

2 + 𝑘𝑘2
2)

′
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≠ 0. 

Theorem 3.  Let 𝛾𝛾 is a curve that the vector N  be space-like and 1B  be 
time-like in ℝ1

4 with Frenet frame {𝑇𝑇, 𝑁𝑁, 𝐵𝐵1, 𝐵𝐵2}. If the curve 𝛾𝛾 is a 3-
type slant helix and 3-type Darboux slant helix in ℝ1

4, then we obtain 
the following non-linear equation  

𝑦𝑦′2 + 2𝑘𝑘2
𝑘𝑘3

𝜆𝜆′𝑦𝑦′ + (𝑘𝑘1
2 + 𝑘𝑘1

2𝑘𝑘2
2

𝑘𝑘3
2 ) 𝑦𝑦2 + [𝑘𝑘2

2

𝑘𝑘3
2 𝜆𝜆′2 − 𝜇𝜇 𝑘𝑘1

2

𝑘𝑘3
2 𝜆𝜆′2] = 0 

where 𝑦𝑦 = 𝑘𝑘3
𝑘𝑘2

2−𝑘𝑘3
2 and 𝜇𝜇 = 𝐾𝐾3

𝑐𝑐3
2 + 1, 𝜆𝜆′ are constants. 

Proof. In ℝ1
4, let 𝛾𝛾 = 𝛾𝛾(𝑠𝑠)  be a 3-type slant helix and a 3-type Darboux 

slant helix. If  𝐔𝐔 is a definite direction that is not zero, then  
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𝑢𝑢1 = 〈𝑇𝑇, 𝐔𝐔〉 = ( 𝑘𝑘2
𝑘𝑘1

2+𝑘𝑘2
2) 𝑐𝑐5

𝑢𝑢2 = 〈𝑁𝑁, 𝐔𝐔〉 = 𝑐𝑐2

𝑢𝑢3 = 〈𝐵𝐵1, 𝐔𝐔〉 = − ( 𝑘𝑘1
𝑘𝑘1

2+𝑘𝑘2
2) 𝑐𝑐5

𝑢𝑢4 = 〈𝐵𝐵2, 𝐔𝐔〉 = − (𝑘𝑘2
𝑘𝑘3

) 𝑐𝑐2 + 1
𝑘𝑘3

( 𝑘𝑘1
𝑘𝑘1

2+𝑘𝑘2
2)

′
𝑐𝑐5.

                         (20)                     

 
By setting (20) in (19), it can be written as 𝐔𝐔 = ( 𝑘𝑘2

𝑘𝑘1
2+𝑘𝑘2

2) 𝑐𝑐5𝑇𝑇 + 𝑐𝑐2𝑁𝑁 −

( 𝑘𝑘1
𝑘𝑘1

2+𝑘𝑘2
2) 𝑐𝑐5𝐵𝐵1 + (− (𝑘𝑘2

𝑘𝑘3
) 𝑐𝑐2 + 1

𝑘𝑘3
( 𝑘𝑘1

𝑘𝑘1
2+𝑘𝑘2

2)
′

𝑐𝑐5) 𝐵𝐵2. If we standard scalar 

product both sides of the last equation by 𝐔𝐔 and 𝑐𝑐5 = 𝑘𝑘1
𝜀𝜀′ 𝑐𝑐2 where 𝜀𝜀′ =

( 𝑘𝑘2
𝑘𝑘1

2+𝑘𝑘2
2)

′
, we find  

 

𝐾𝐾2 = 𝑘𝑘1
2

𝜀𝜀′2 ( 𝑘𝑘1
𝑘𝑘1

2 + 𝑘𝑘2
2)

2
𝑐𝑐2

2 + 𝑐𝑐2
2 + ( 𝑘𝑘1

2

𝑘𝑘1
2 + 𝑘𝑘2

2)
2
 

                                                             𝑐𝑐2
2

𝜀𝜀′2 (− 𝑘𝑘2
𝑘𝑘3

+     𝑘𝑘1

𝑘𝑘3𝜀𝜀′( 𝑘𝑘1
𝑘𝑘12+𝑘𝑘22

)
′)

2

𝑐𝑐2
2. (21)                

 

If we divide both sides of equation (21) by 𝑐𝑐2
2 and 𝜇𝜇 = 𝐾𝐾2

𝑐𝑐2
2 − 1 are taken, 

we obtain the following non-linear equation,  

𝑦𝑦′2 − 2𝑘𝑘2
𝑘𝑘1

𝜀𝜀′𝑦𝑦′ + (𝑘𝑘3
2 + 𝑘𝑘2

2𝑘𝑘3
2

𝑘𝑘1
2 ) 𝑦𝑦2 + [𝑘𝑘2

2

𝑘𝑘1
2 𝜀𝜀′2 − 𝜇𝜇 𝑘𝑘3

2

𝑘𝑘1
2 𝜀𝜀′2] = 0. 

The proof is completed.  
Corollary 1.  Let 𝛾𝛾 is a curve that the vector N  be space-like and 1B  
be time-like in ℝ1

4 with non-zero curvatures 𝑘𝑘1, 𝑘𝑘2 and 𝑘𝑘3. If the curve 
𝛾𝛾 is a 2-type slant helix and 2-type Darboux slant helix in ℝ1

4, then the 
following holds  

𝑐𝑐2
𝑐𝑐5

= 1
𝑘𝑘1

( 𝑘𝑘2
𝑘𝑘1

2 + 𝑘𝑘2
2)

′
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≠ 0. 

Theorem 3.  Let 𝛾𝛾 is a curve that the vector N  be space-like and 1B  be 
time-like in ℝ1

4 with Frenet frame {𝑇𝑇, 𝑁𝑁, 𝐵𝐵1, 𝐵𝐵2}. If the curve 𝛾𝛾 is a 3-
type slant helix and 3-type Darboux slant helix in ℝ1

4, then we obtain 
the following non-linear equation  

𝑦𝑦′2 + 2𝑘𝑘2
𝑘𝑘3

𝜆𝜆′𝑦𝑦′ + (𝑘𝑘1
2 + 𝑘𝑘1

2𝑘𝑘2
2

𝑘𝑘3
2 ) 𝑦𝑦2 + [𝑘𝑘2

2

𝑘𝑘3
2 𝜆𝜆′2 − 𝜇𝜇 𝑘𝑘1

2

𝑘𝑘3
2 𝜆𝜆′2] = 0 

where 𝑦𝑦 = 𝑘𝑘3
𝑘𝑘2

2−𝑘𝑘3
2 and 𝜇𝜇 = 𝐾𝐾3

𝑐𝑐3
2 + 1, 𝜆𝜆′ are constants. 

Proof. In ℝ1
4, let 𝛾𝛾 = 𝛾𝛾(𝑠𝑠)  be a 3-type slant helix and a 3-type Darboux 

slant helix. If  𝐔𝐔 is a definite direction that is not zero, then  
 

〈𝐵𝐵1, 𝐔𝐔〉 = 𝑐𝑐3                                                                              (22) 
 

is a constant along the curve 𝛾𝛾 = 𝛾𝛾(𝑠𝑠). Differentiating (22) with respect 
to 𝑠𝑠, we get  
 

〈𝐵𝐵1
′ , 𝐔𝐔〉 = 0.                                                                              (23) 

 
From 𝛾𝛾 = 𝛾𝛾(𝑠𝑠) is a 3-type Darboux slant helix, we can write  
 

〈𝐷𝐷3, 𝐔𝐔〉 = 𝑐𝑐6.                                                                       (24) 
By setting (1) in (23), we find the following equation:  
 

𝑘𝑘2〈𝑁𝑁, 𝐔𝐔〉 + 𝑘𝑘3〈𝐵𝐵2, 𝐔𝐔〉 = 0                                                    (25) 
 

 and substituting (24) to (2), we obtain as below:  
 

𝑘𝑘3〈𝑁𝑁, 𝐔𝐔〉 + 𝑘𝑘2〈𝐵𝐵2, 𝐔𝐔〉 = 𝑐𝑐6.                                                  (26)                         
 

 By setting (25) in (26), we find 
  

〈𝑁𝑁, 𝐔𝐔〉 = −𝑐𝑐6𝑘𝑘3
𝑘𝑘2

2−𝑘𝑘3
2                                                                       (27) 

 
it follows that  
 

〈𝐵𝐵2, 𝐔𝐔〉 = 𝑐𝑐6𝑘𝑘2
𝑘𝑘2

2−𝑘𝑘3
2.                                                                      (28) 

 
Differentiating (27) with respect to 𝑠𝑠 , we get  〈𝑇𝑇, 𝐔𝐔〉 = 𝑘𝑘2

𝑘𝑘1
𝑐𝑐3 +

1
𝑘𝑘1

( 𝑘𝑘3
𝑘𝑘2

2−𝑘𝑘3
2)

′
𝑐𝑐6.   

Differentiating (28) with respect to 𝑠𝑠 , we get  𝑐𝑐6 = 𝑘𝑘3

( 𝑘𝑘2
𝑘𝑘22−𝑘𝑘32

)
′ 𝑐𝑐3. 𝐔𝐔  a 

constant field, we can write  
 𝐔𝐔 = 𝑢𝑢1𝑇𝑇 + 𝑢𝑢2𝑁𝑁 + 𝑢𝑢3𝐵𝐵1 + 𝑢𝑢4𝐵𝐵2 
 and for 𝐾𝐾 is a constant 〈𝐔𝐔, 𝐔𝐔〉 = 𝐾𝐾2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. This suggests that 
the subspace spanned by {𝑇𝑇, 𝐵𝐵1, 𝐵𝐵2} contains the unit vector 𝐔𝐔. Using 
equation (1), we obtain the components of  𝐔𝐔 as follows:  
 

𝐔𝐔 = (𝑘𝑘2
𝑘𝑘1

𝑐𝑐3 + 1
𝑘𝑘1

( 𝑘𝑘3
𝑘𝑘2

2−𝑘𝑘3
2)

′
𝑐𝑐6) 𝑇𝑇 + (−𝑐𝑐6𝑘𝑘3

𝑘𝑘2
2−𝑘𝑘3

2) 𝑁𝑁 − 𝑐𝑐3𝐵𝐵1 + ( 𝑐𝑐6𝑘𝑘2
𝑘𝑘2

2−𝑘𝑘3
2) 𝐵𝐵2.(29)                   

 
 If we standard scalar product both sides of equation (29) by 𝐔𝐔 and 𝑐𝑐6 =
𝑘𝑘3
𝜆𝜆′ 𝑐𝑐3  is written, we find  
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𝐾𝐾2 = 1
𝑘𝑘1

2 (𝑘𝑘2 + 𝑘𝑘3
𝜆𝜆′ ( 𝑘𝑘3

𝑘𝑘2
2−𝑘𝑘3

2)
′
)

2
𝑐𝑐3

2 + ( 1
𝜆𝜆′ ( 𝑘𝑘3

2

𝑘𝑘2
2−𝑘𝑘3

2))
2

𝑐𝑐3
2 − 𝑐𝑐3

2 +

                                                                   (𝑘𝑘3
𝜆𝜆′ ( 𝑘𝑘2

𝑘𝑘2
2−𝑘𝑘3

2))
2

𝑐𝑐3
2, 

 where 𝜆𝜆′ = ( 𝑘𝑘2
𝑘𝑘2

2−𝑘𝑘3
2)

′
. If we divide both sides of last equation by 𝑐𝑐3

2 and 

𝜇𝜇 = 𝐾𝐾2

𝑐𝑐3
2 + 1, 𝑦𝑦 = ( 𝑘𝑘3

𝑘𝑘2
2−𝑘𝑘3

2)
′
 is taken, we obtain non-linear equation.  

The proof is completed.  
Corollary 2.  Let 𝛾𝛾 is a curve that the vector N  be space-like and 1B  
be time-like in ℝ1

4 with non-zero curvatures 𝑘𝑘1, 𝑘𝑘2 and 𝑘𝑘3. If the curve 
𝛾𝛾 is a 3-type slant helix and 3-type Darboux slant helix in ℝ1

4, then the 
following holds  

𝑐𝑐3
𝑐𝑐6

= 1
𝑘𝑘3

( 𝑘𝑘2
𝑘𝑘2

2 − 𝑘𝑘3
2)

′
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≠ 0. 

Theorem 4. Let 𝛾𝛾 is a curve that the vector N  be space-like and 1B  be 
time-like in ℝ1

4 with Frenet frame {𝑇𝑇, 𝑁𝑁, 𝐵𝐵1, 𝐵𝐵2}. If the curve 𝛾𝛾 is a 4-
type slant helix and 4-type Darboux slant helix in ℝ1

4, then we obtain 
the following non-linear equation, 

1
𝑘𝑘1

2 𝑦𝑦′2 − 𝑦𝑦2 − 𝜇𝜇 = 0 

where   and 𝜇𝜇 = 𝐾𝐾2

𝑐𝑐4
2 − 1, because   are constants. 

Proof. In ℝ1
4, let 𝛾𝛾 = 𝛾𝛾(𝑠𝑠)  be a 4-type slant helix and a 4-type Darboux 

slant helix. If  𝐔𝐔 is a definite direction that is not zero, then  
 
 〈𝐵𝐵2, 𝐔𝐔〉 = 𝑐𝑐4                                                                                    (30) 
 
is a constant along the curve 𝛾𝛾 = 𝛾𝛾(𝑠𝑠) . From 𝛾𝛾 = 𝛾𝛾(𝑠𝑠)  is a 4-type 
Darboux slant helix, we find 〈𝐷𝐷1, 𝐔𝐔〉 = 𝑐𝑐4.  Differentiating (30) with 
respect to 𝑠𝑠, we get  〈𝐵𝐵2

′ , 𝐔𝐔〉 = 0. 𝐔𝐔 a constant field, we can write  
𝐔𝐔 = 𝑢𝑢1𝑇𝑇 + 𝑢𝑢2𝑁𝑁 + 𝑢𝑢3𝐵𝐵1 + 𝑢𝑢4𝐵𝐵2  and for 𝐾𝐾  is a constant 〈𝐔𝐔, 𝐔𝐔〉 =
𝐾𝐾2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.   
This suggests that the subspace spanned by {𝑇𝑇, 𝐵𝐵1, 𝐵𝐵2} contains the unit 
vector 𝐔𝐔 . Using equation (1), we obtain the components of  𝐔𝐔  as 
follows:  
 

𝐔𝐔 = 1
𝑘𝑘1

𝑘𝑘3
𝑘𝑘2

′
𝑐𝑐4𝑇𝑇 − 𝑘𝑘3

𝑘𝑘2
𝑐𝑐4𝑁𝑁 + 𝑐𝑐4𝐵𝐵2. (31)                                                                     

 
 If we standard scalar product both sides of equation (31) by 𝐔𝐔, we find  
 

𝐾𝐾2 = 𝑐𝑐4
2 − 𝑐𝑐4

2 (𝑘𝑘1
𝑘𝑘2

)
2

+ 𝑐𝑐4
2

𝑘𝑘3
2 ((𝑘𝑘1

𝑘𝑘2
)

′
)

2
. (32)                                                                  
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𝐾𝐾2 = 1
𝑘𝑘1

2 (𝑘𝑘2 + 𝑘𝑘3
𝜆𝜆′ ( 𝑘𝑘3

𝑘𝑘2
2−𝑘𝑘3

2)
′
)

2
𝑐𝑐3

2 + ( 1
𝜆𝜆′ ( 𝑘𝑘3

2

𝑘𝑘2
2−𝑘𝑘3

2))
2

𝑐𝑐3
2 − 𝑐𝑐3

2 +

                                                                   (𝑘𝑘3
𝜆𝜆′ ( 𝑘𝑘2

𝑘𝑘2
2−𝑘𝑘3

2))
2

𝑐𝑐3
2, 

 where 𝜆𝜆′ = ( 𝑘𝑘2
𝑘𝑘2

2−𝑘𝑘3
2)

′
. If we divide both sides of last equation by 𝑐𝑐3

2 and 

𝜇𝜇 = 𝐾𝐾2

𝑐𝑐3
2 + 1, 𝑦𝑦 = ( 𝑘𝑘3

𝑘𝑘2
2−𝑘𝑘3

2)
′
 is taken, we obtain non-linear equation.  

The proof is completed.  
Corollary 2.  Let 𝛾𝛾 is a curve that the vector N  be space-like and 1B  
be time-like in ℝ1

4 with non-zero curvatures 𝑘𝑘1, 𝑘𝑘2 and 𝑘𝑘3. If the curve 
𝛾𝛾 is a 3-type slant helix and 3-type Darboux slant helix in ℝ1

4, then the 
following holds  

𝑐𝑐3
𝑐𝑐6

= 1
𝑘𝑘3

( 𝑘𝑘2
𝑘𝑘2

2 − 𝑘𝑘3
2)

′
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≠ 0. 

Theorem 4. Let 𝛾𝛾 is a curve that the vector N  be space-like and 1B  be 
time-like in ℝ1

4 with Frenet frame {𝑇𝑇, 𝑁𝑁, 𝐵𝐵1, 𝐵𝐵2}. If the curve 𝛾𝛾 is a 4-
type slant helix and 4-type Darboux slant helix in ℝ1

4, then we obtain 
the following non-linear equation, 

1
𝑘𝑘1

2 𝑦𝑦′2 − 𝑦𝑦2 − 𝜇𝜇 = 0 

where   and 𝜇𝜇 = 𝐾𝐾2

𝑐𝑐4
2 − 1, because   are constants. 

Proof. In ℝ1
4, let 𝛾𝛾 = 𝛾𝛾(𝑠𝑠)  be a 4-type slant helix and a 4-type Darboux 

slant helix. If  𝐔𝐔 is a definite direction that is not zero, then  
 
 〈𝐵𝐵2, 𝐔𝐔〉 = 𝑐𝑐4                                                                                    (30) 
 
is a constant along the curve 𝛾𝛾 = 𝛾𝛾(𝑠𝑠) . From 𝛾𝛾 = 𝛾𝛾(𝑠𝑠)  is a 4-type 
Darboux slant helix, we find 〈𝐷𝐷1, 𝐔𝐔〉 = 𝑐𝑐4.  Differentiating (30) with 
respect to 𝑠𝑠, we get  〈𝐵𝐵2

′ , 𝐔𝐔〉 = 0. 𝐔𝐔 a constant field, we can write  
𝐔𝐔 = 𝑢𝑢1𝑇𝑇 + 𝑢𝑢2𝑁𝑁 + 𝑢𝑢3𝐵𝐵1 + 𝑢𝑢4𝐵𝐵2  and for 𝐾𝐾  is a constant 〈𝐔𝐔, 𝐔𝐔〉 =
𝐾𝐾2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.   
This suggests that the subspace spanned by {𝑇𝑇, 𝐵𝐵1, 𝐵𝐵2} contains the unit 
vector 𝐔𝐔 . Using equation (1), we obtain the components of  𝐔𝐔  as 
follows:  
 

𝐔𝐔 = 1
𝑘𝑘1

𝑘𝑘3
𝑘𝑘2

′
𝑐𝑐4𝑇𝑇 − 𝑘𝑘3

𝑘𝑘2
𝑐𝑐4𝑁𝑁 + 𝑐𝑐4𝐵𝐵2. (31)                                                                     

 
 If we standard scalar product both sides of equation (31) by 𝐔𝐔, we find  
 

𝐾𝐾2 = 𝑐𝑐4
2 − 𝑐𝑐4

2 (𝑘𝑘1
𝑘𝑘2

)
2

+ 𝑐𝑐42

𝑘𝑘3
2 ((𝑘𝑘1

𝑘𝑘2
)

′
)

2
. (32)                                                                  

If we divide both sides of equation (32) by 𝑐𝑐42 , we have  𝐾𝐾
2

𝑐𝑐42
− 1 =

−(𝑘𝑘3𝑘𝑘2)
2
+ 1

𝑘𝑘12
((𝑘𝑘3𝑘𝑘2)

′
)
2
.  If 𝜇𝜇 = 𝐾𝐾2

𝑐𝑐42
− 1 is taken, we obtain  

 
1
𝑘𝑘12
((𝑘𝑘3𝑘𝑘2)

′
)
2
− (𝑘𝑘3𝑘𝑘2)

2
− 𝜇𝜇 = 0.                                                              (33) 

 
If 𝑦𝑦 = 𝑘𝑘3

𝑘𝑘2
 is taken, we obtain the non-linear equation and so the proof is 

completed.  
A numerical example is provided for theorem 4 and its figure are as 
follows are demonstrated using found values for 𝑘𝑘1 and 𝜇𝜇. 
 
3.APPLICATIONS 

A numerical example is provided for theorem 1 and its figure are as 
follows are demonstrated using found values for 𝑘𝑘3 and 𝜇𝜇.  
Example 1. Let  be a unit speed time-like curve in 4

1R  , given by the 
equation 

  ( ) ( ) ( ) ( )1 1( ) cos 2 , sin 2 ,cosh ,sinh
2 2

y s s s s s =  
 

. We easily 

obtain the curvatures and    as follows: 

1 1 1
5 3 2 25( ) , ( ) , ( ) ,
2 92 5 5

k s k s k s = = = = −  and so, the solution of 

according to the non-linear equation (12) with coefficient , we get   

( )
( )

( )

( )
1

2
2

3

2
5 tan

2
1 tan

5

5

s i
sk s

k s s i
s

 − +
  
 =
 − +

− −   
 
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Figure  1. Approximate solution curves of Example 1. 

  
Example 2. Let  be a unit speed time-like curve in  with the 
equation  We easily obtain 
the curvatures and  as follows:  

 and the solution 
according to the non-linear equation (33), yield the following equation: 
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Example 2. Let  be a unit speed time-like curve in  with the 
equation  We easily obtain 
the curvatures and  as follows:  

 and the solution 
according to the non-linear equation (33), yield the following equation: 

 

 

 
 

Figure 2. Approximate solution curves of Example 2. 
 
 

4.CONCLUSIONS 

The slant helices in Minkowski 4-space 4
1  exhibit rich geometric 

structures that differ from their Euclidean counterparts due to the 

indefinite nature of the metric. The distinction between space-like and 

time-like components in the Frenet frame leads to unique behaviors and 

differential relationships. In particular, the existence of distinct 

nonlinear equations characterizing each k -type slant helix reveals that 

these curves are governed by intricate geometric constraints. Moreover, 

the utilization of the Darboux vector frame adds further geometric 

insight into the internal symmetries of these curves. These results may 

have applications in relativity theory, where the Minkowski structure 

naturally appears, and in modeling trajectories constrained by 

Lorentzian geometry. 

In this paper, we have investigated the geometry of k -type slant helices 

in Minkowski 4-space 4
1  under the assumption that the binormal 

vector 1B  is time-like. By employing the Frenet and Darboux frames, 

we derived several nonlinear differential equations corresponding to  
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1,2,3,4k = . These equations provide necessary conditions for a curve 

to be classified as a k -type slant helix or Darboux slant helix.  

We explore the relationship between k -type slant helices and their 

corresponding k -type Darboux slant helices, as well as the nonlinear 

differential equations of the slant helices that depend on the various 

geometric and analytic variables involved. This work lays the 

groundwork for future studies that may examine conditions under 

which the constants defining the k -type slant helices and the k -type 

Darboux slant helices coincide. Our results not only generalize classical 

slant helix concepts into the Lorentzian context but also offer new 

insights into the interplay between curvature functions and geometric 

invariants in higher-dimensional semi-Riemannian spaces. The 

inclusion of numerical examples and visualizations further confirms the 

theoretical findings. Future studies may extend this approach to 

partially null or pseudo null curves, or explore similar structures in 

other signature spaces, or extending these results to higher-dimensional 

pseudo-Riemannian manifolds. 
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1.Introduction 

 

Let us consider the inverse scattering problem for the differential equation 

 2( ) ( ) ( ) ( ) ( ), 0 ,x q x x x x x    − + =   +  (1) 

subject to the boundary condition 

 2
1 2 1 2(0) (0) (0) (0) ,( ) ( )       − − = −  (2) 

where   is the spectral parameter. 

 

The potential function ( )q x  is assumed to be real-valued and to satisfy the integrability 
condition 

 
0

(1 ) ( ) .x q x dx
+

+    (3) 

Furthermore, ( )x  is a positive piecewise-constant function with a finite number of points of 
discontinuity. The constants i  and i  ( 1,2)i =  are real numbers satisfying 

 1 2 2 1: 0.    = −   

The aim of this work is to investigate both the direct and inverse scattering problems on 
the half-line [0, )+  for the boundary value problem (1)- (3) 

 

2. Related Works 

 

In the case ( ) 1x  , the inverse scattering problem for equation (1)} with boundary conditions 
not containing the spectral parameter was completely solved by Marchenko (Marchenko1955, 
Marchenko1986), Levitan (Levitan1975, Levitan1987), Aktosun  (Aktosun2004), as well as 
Aktosun and Weder (Aktosun-Weder2006). 

The version of the problem with discontinuous coefficients was investigated by 
Gasymov (Gasymov1977) and Darwish ( Darwish1993). In these works, the solution of the 
inverse scattering problem on the half-line [0, )+  by means of transformation operators was 
reduced to the solution of two inverse problems on the intervals [0, ]a  and [ , )a + . 

In the case ( ) 1x  , the inverse scattering problem was studied by Guseinov and 
Pashaev (Guseinov-Pashaev2002), who employed a new non-triangular representation of the 
Jost solution corresponding to equation (1). It was shown that the discontinuity of the function 

( )x  strongly influences both the structure of the Jost solution and the main equation of the 
inverse problem. 
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reduced to the solution of two inverse problems on the intervals [0, ]a  and [ , )a + . 

In the case ( ) 1x  , the inverse scattering problem was studied by Guseinov and 
Pashaev (Guseinov-Pashaev2002), who employed a new non-triangular representation of the 
Jost solution corresponding to equation (1). It was shown that the discontinuity of the function 

( )x  strongly influences both the structure of the Jost solution and the main equation of the 
inverse problem. 

 

We note that similar phenomena do not arise for systems of Dirac equations with 
discontinuous coefficients, as shown by Mamedov and Çöl (Mamedov-Col2008).  

The uniqueness of the solution of the inverse problem and its geophysical applications for 
equation (1) in the case ( ) 0q x   were investigated by Tikhonov (Tikhonov1949) and Alimov 
(Alimov1976). 

 

The inverse problem for a wave equation with a piecewise constant coefficient was studied by 
Lavrent'ev (Lavrentev1992). 

 

When ( ) 1x   and the spectral parameter appears in the boundary conditions of equation (1), 
the inverse problem on the half-line was considered by Pocheykina and Fedotova 
(Pocheykina1972) using the spectral function approach, by Yurko (Yurko2000a, Yurko2000b, 
Yurko2002) using the Weyl function, and by Mamedov (Mamedov2003,Mamedov2009) based 
on scattering data. 

 

Boundary value problems with spectral parameter-dependent boundary conditions arise in a 
wide range of physical and applied problems, including heat conduction problems studied by 
Cohen (Cohen1966) and wave equations investigated by Yurko (Yurko2000a, Yurko2000b). 

 

Spectral analysis of Sturm--Liouville problems on the half-line was examined by Fulton 
(Fulton1977). Physical applications of problems with linear dependence on the spectral 
parameter in the boundary conditions on a finite interval were discussed by Fulton 
(Fulton1981). 

 

On a finite interval, inverse spectral problems for Sturm--Liouville operators with linear or 
nonlinear dependence on the spectral parameter in the boundary conditions were studied by 
Chernozhukova and Freiling (ChernozhukovaFreiling2009), Chugunova (Chugunova2001), 
Rundell and Sacks (Rundell-Sacks2004)}, Guliyev (Guliyev2005), and Mamedov and 
Çetinkaya (Mamedov-Cetinkaya2014, Mamedov-Cetinkaya2013). 

 

 

3. Scattering Data and the Inverse Problem 

 

For the boundary value problem (1)- (3) the following results are obtained: 

a) the scattering data corresponding to the boundary value problem (1)- (3) are defined; 

b) the main equation of the inverse problem is derived; 
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c) the uniqueness of the solution of the main equation is proved; 

d) the uniqueness of the solution of the inverse problem is established; 

a)  a Levinson-type formula is obtained. 

 

For simplicity, we assume that in equation (1)  the function ( )x  has a single point of 
discontinuity, namely 

 
2

1
, 0( )
, 0

x a
x

x



  

= 


 (1.4) 

where 0 1  . 

 

The function  

 ( ) ( )
0

1 1 1 1( , ) 1 1 ,
2 2( ) ( )

i x i xf x e e
x x

 
 

+ −   
= + + −      

   
 (5) 

where 

 ( ) ( ) 1 ( ) ,( )x x x a x   =  +  

is the Jost solution of equation (1) for ( ) 0q x  . 

 

It is known from (Guseinov-Pashaev1998) that for all   in the closed upper half-plane, 
equation (1) has a unique Jost solution ( , )f x   satisfying 

 lim ( , ) 1,i x

x
f x e  −

→+
=  (6) 

and admitting the representation 

 0 ( )
( , ) ( , ) ( , ) ,i t

x
f x f x K x t e dt


 

+

+
= +   (7) 

where the kernel ( , )K x t  satisfies 

 ( )( )
| ( , ) | exp | ( ) | , 0 const.

x x
K x t dt C t q t dt C

+

+ +
  =   (8) 

 

Moreover, the kernel ( , )K x t  possesses the properties 

 1 1( , ( )) 1 ( ),
4 ( ) ( )

d K x x q x
dx x x


 

+
 

= − +  
 

 (9) 
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 1 1( , ( )) 1 ( ),
4 ( ) ( )

d K x x q x
dx x x


 

+
 

= − +  
 

 (9) 

   1 1( , ( ) 0) ( , ( ) 0) 1 ( ).
4 ( ) ( )

d K x x K x x q x
dx x x

 
 

− −
 

+ − − = −  
 

 (10) 

 

If ( )q x  is differentiable, then ( , )K x t  satisfies almost everywhere 

 
2 2

2 2( ) ( ) 0, 0 , ( ).K Kx q x K x t x
t x

 + 
− + =   + 

 
 (11) 

 

For real 0  , the functions ( , )f x   and ( , )f x   form a fundamental system of solutions of 
the equation (1) and their Wronskian satisfies 

 { ( , ), ( , )} 2 ,W f x f x i  =  

where { , }W f g f g fg = − . 

 

Let ( , )w x   be the solution of equation (1) satisfying 

 2 2
2 2 1 1(0, ) , (0, ) .w w       = + = +  (12) 

 

Then for all real 0   the identity 

 2 2
2 2 1 1

2 ( , ) ( , ) ( ) ( , )
( ) (0, ) ( ) (0, )

i w x f x S f x
f f

    
       

= −
+ − +

 (13) 

holds, where 

 
2 2

2 2 1 1
2 2

2 2 1 1

( ) (0, ) ( ) (0, )( ) .
( ) (0, ) ( ) (0, )

f fS
f f

       
       

+ − +
=

+ − +
 (14) 

Moreover, 

 1( ) ( ) [ ( )] .S S S   −= − = −  

 

 

The function ( )S   is called the scattering function of the boundary value problem (1)-(3). 

 

The function ( )   has only finitely many zeros in the half-plane Im 0  , all of which are 
simple and lie on the imaginary axis. 
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Define 

 

2 2 2
2 10

2 1

1( ) ( , ) (0, ) (0, )

1     ( ) (0, ) (0, ) , 1, 2, , .
2

| | | |

[ ]

k k k k

k k k
k

m x f x i dx f i f i

i f i f i k n
i

     


     
 

+− = + −

 = − = 


 

 

These quantities are called the normalizing numbers of the boundary value problem (1)-(3). 

 

The collection 

 { ( ), ; ; , 1, 2, , }k kS m k n  −   + =   

 

is called the scattering data of the boundary value problem (1)-(3). 

 

The inverse scattering problem consists in recovering the potential ( )q x  from the scattering 
data. 

 

For each fixed 0x  , the kernel ( , )K x y  satisfies the integral equation 

 0( )

1 ( )
( , ) ( , ) ( ) ( , ) ( , 2 ) 0,

1 ( )x

x
F x y K x t F t y dt K x y K x a y

x


+

+ −
+ + + + − =

+  (15) 

where 

 2
0 0

1

1( ) ( ) ( ) ,
2

[ ] k

n
xi x

k
k

F x S S e d m e   


+ −−

−
=

= − +  (16) 

 0 0
1 1 1 1( , ) 1 ( ( )) 1 ( ( )).
2 2( ) ( )

F x y F y x F y x
x x

 
 

+ −
   

= + + + − +      
   

 (17) 

 

Equation (15) is called the main equation of the inverse scattering problem. Due to the 
discontinuity of ( )x , it differs essentially from the classical Marchenko equation and is 
therefore referred to as the modified Marchenko equation. 

 

Using the main equation, it is shown that the scattering function ( )S   is continuous for all real 
 , and the main equation admits a unique solution 1( , ) ( ( ), )K x L x+    for each 0x  . 
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Equation (15) is called the main equation of the inverse scattering problem. Due to the 
discontinuity of ( )x , it differs essentially from the classical Marchenko equation and is 
therefore referred to as the modified Marchenko equation. 

 

Using the main equation, it is shown that the scattering function ( )S   is continuous for all real 
 , and the main equation admits a unique solution 1( , ) ( ( ), )K x L x+    for each 0x  . 

 

Consequently, the scattering data uniquely determine the boundary value problem (1)-(3). 

 

 

4. Levinson-Type Formula 

 

We now present a Levinson-type formula which establishes a relation between the increment 
of the argument of the scattering function ( )S   and the number of eigenvalues of the boundary 
value problem (1)-(3). 

 

Theorem (Levinson-Type Formula) 

The following identity holds: 

 2
ln ( 0) ln ( ) 1 (0)( ) ,

2 4
S S SC n

i



+ − + −

+ − =  

where n  denotes the number of eigenvalues of the boundary value problem (1)-(3) and the 
constant 2( )C   is defined by 

 2
2

2

3 , 0,
( ) 2

1, 0.
C






 = 
 =

 

 

5. An Application 

 

In classical quantum mechanics, the stationary state of a system consisting of two particles with 
masses 1m  and 2m  and total energy E  is described by the wave function  , which satisfies 
the Schrödinger equation 

 
2

( ) ,
2
h V x E
M

− +  =   (18) 

where h  is Planck's constant,  

1 2

1 2

mmM
m m

=
+

 

is the reduced mass, ( )V x  is the interaction potential, and x x=  denotes the distance between 
the two particles. 
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Since the potential ( )V x  depends only on the distance  x , separation of variables in 

The equation (18) yields the separation equation 

 1( ) ( , ) ( , ),mx x u E x Y  − =  

 

where ( , )mY    are the spherical harmonics. The radial function ( , )u E x  satisfies the 
differential equation  

 
2

2
( 1) ( ) ,

2
h u u V x u Eu
M x

+ − − + = 
 

 (19 

together with the boundary condition 

 ( ,0) 0.u E =  

 

Introducing the notations 

 2
2 2

2 2( ) ( ), ,M MEq x V x
h h

= =  (20) 

The equation (19) can be rewritten as the boundary value problem 

 2
2

( 1)( ) , 0 ,u q x u u u x
x


+

− + + =     (21) 

subject to 

 (0) 0.u =  (22) 

 

The solutions of the boundary value problem (20-22) that remain bounded as x→  are 

called the radial wave functions. 

 

We assume that the potential satisfies 

 
0

| ( ) | .x q x dx


   (23) 

Under this condition, it follows from the results of the previous sections that for 0=  the 
problem (20)-(22)  admits bounded solutions 0 ( )u x  corresponding to 2 0   and to discrete 
eigenvalues ki =  ( 1, , )k n=  . Moreover, as x→ , 

 2
0( ) ( ) (1), 0 ,i x i xu x e S e o  −= − +    (24) 

and 
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0
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problem (20)-(22)  admits bounded solutions 0 ( )u x  corresponding to 2 0   and to discrete 
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 2
0( ) ( ) (1), 0 ,i x i xu x e S e o  −= − +    (24) 

and 

 0( , ) (1 (1)), 1, , .k x
k ku i x m e o k n −= + =   (25) 

 

Thus, the scattering data 

  ( ), ; , , 1, ,k kS m k n  −   =   (26) 

provide a complete description of the asymptotic behavior of all radial wave functions 0 ( )u x . 
A similar description holds for 0 . 

 

In terms of the scattering data, the potential ( )V x  is uniquely recovered. In particular, if ( , )K x y  
denotes the kernel of the transformation operator, then the potential ( )q x  is given by 

 1( ) ( , ).
2
dq x K x x
dx

= −  
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1. INTRODUCTION 

From antiquity to present, sequences and series have constituted one of 
the central notions in mathematics. The idea of convergence of series, 
which is a well-established concept, traces its origins back to ancient 
times. Before the concept of convergence was precisely defined, 
mathematicians often encountered paradoxical results and unsolvable 
inconsistencies when attempting to assign sums to infinite series using 
arbitrary operations. Some of these contradictions were clarified 
through Gauss’s binomial theorem. Later, Cauchy, by formalizing the 
concept of convergence for sequences and series, provided a systematic 
foundation and offered a new perspective. This development marked 
the beginning of the modern understanding of convergence and 
divergence. Nevertheless, Cauchy’s formulation naturally gave rise to 
a further question: Is it possible to assign a sum to a divergent series? 
The affirmative answer to this question came through the extension of 
convergence to broader notions, giving rise to the theory of 
summability. 

To illustrate the idea, let us consider the following example, which 
highlights the essence of summability in a simple manner. For ∣ 𝑧𝑧 ∣< 1, 
it is well known that 

1 + 𝑧𝑧 + 𝑧𝑧2 + ⋯ = 1
1 − 𝑧𝑧  . 

Substituting 𝑧𝑧 = −1 into this identity, Euler obtained 

1 − 1 + 1 − 1 + ⋯ =  1
2.                                          (1) 

In the framework of Cauchy convergence, there is a problem, since the 
series 

∑(−1)𝑘𝑘
∞

𝑘𝑘=0
 

diverges. However, when the sequence of partial sums (𝑏𝑏𝑚𝑚) is 
transformed by the first-order Cesàro mean, one obtains 

𝑡𝑡𝑛𝑛 = 1
𝑛𝑛 + 1 ∑ 𝑏𝑏𝑘𝑘

𝑛𝑛

𝑘𝑘=0
 = 1

2 + 1
4(𝑛𝑛 + 1) [1 + (−1)𝑛𝑛].    

Here, it is clear that  (𝑡𝑡𝑛𝑛) converges to 1/2, 𝑛𝑛 → ∞. Hence, the sum of 
the non-convergent series given by (1) is calculated as 1/2 using the 
Ces𝑎̀𝑎ro summability method. This example shows that divergent series 
can be summed, if the method is changed, so it is very important in 
terms of summability theory. This classical example demonstrates that 
divergent series can indeed be summed under suitable transformations, 
hence underlining the significance of summability theory. 
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Summability theory continues to hold an important role across various 
branches of mathematics and the applied sciences. It is widely utilized 
in engineering disciplines, applied analysis, functional analysis, Fourier 
analysis, and related areas. In this regard, the literature on summability 
theory has evolved in two principal directions: first, through the 
construction, study, and characterization of new summability methods 
and their associated sequence spaces generated by classical matrices 
such as Hausdorff, Hölder, Fibonacci, Cesàro, Nörlund, and Euler; and 
second, through the development of new absolute summability methods 
and sequence spaces obtained via absolute summability methods from 
different perspectives. More recently, absolute summability methods 
have gained increasing importance, leading to the development of novel 
sequence spaces that provide fresh insights and broaden the scope of 
the field. As a result, summability theory continues to make substantial 
contributions to contemporary mathematical research and remains a 
dynamic and influential area of study. Further examples and related 
discussions can be found in (see (Bor, 1993; Çınar and Et, 2020; Erdem, 
2024; Ilkhan, 2020; Sulaiman, 1992; Yaying et al., 2025; Yaying et al, 
2021)). 
 
On the other hand, one of the key concepts addressed in this study is the 
𝑞𝑞-analogue of a mathematical expression, which involves generalizing 
the expression by introducing a parameter 𝑞𝑞. As 𝑞𝑞 → 1, the 𝑞𝑞- analogue 
naturally reduces to its classical method. Although the origins of 𝑞𝑞-
calculus can be traced back to the work of Euler, it has become a more 
vibrant and actively researched field in recent years. 𝑞𝑞-calculus has 
attracted attention  due to its wide range of applications in mathematics, 
physics, and engineering. It finds extensive use in various branches of 
mathematics, including approximation theory, combinatorics, quantum 
algebra, special functions, operator theory, hypergeometric functions, 
and beyond. The 𝑞𝑞-Ces𝑎́𝑎ro matrix 𝐶𝐶𝑞𝑞 = (𝑐𝑐𝑛𝑛𝑛𝑛

𝑞𝑞 ), which is one of the basic 
concepts of this study, has recently been defined by Aktuğlu and Bekar 
(2011) as follows: 

𝑐𝑐𝑛𝑛𝑛𝑛
𝑞𝑞 = {

𝑞𝑞𝑣𝑣

[𝑛𝑛 + 1]𝑞𝑞
, 0 ≤ 𝑣𝑣 ≤ 𝑛𝑛

0,                    𝑣𝑣 > 𝑛𝑛
 

where [𝑛𝑛]𝑞𝑞 is the 𝑞𝑞-analogue of a non-negative number 𝑛𝑛 and identified 
by 

[𝑛𝑛]𝑞𝑞 = {
1 − 𝑞𝑞𝑛𝑛

1 − 𝑞𝑞 ,       𝑞𝑞𝑞𝑞𝑅𝑅+ − {1}
𝑛𝑛,        𝑞𝑞 = 1.

 

To highlight the distinction between 𝑞𝑞-analogue summability and its 
classical counterparts, consider the sequence  

𝑥𝑥𝑛𝑛  =   (−1)𝑛𝑛. 
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 This sequence is not classically convergent, but becomes summable for 
0 <  𝑞𝑞 <  1 under a suitable 𝑞𝑞-Ces𝑎̀𝑎ro summability method (see 
Figure 1 for 𝑞𝑞 =  0.5, 𝑠𝑠 =  1, 𝑛𝑛 = 100). Beyond these theoretical 
aspects, applications to Fourier series and 𝑞𝑞-difference equations reveal 
the practical importance of  𝑞𝑞- Ces𝑎̀𝑎ro methods. They provide a refined 
tool for capturing subtle forms of convergence, including weak or 
statistical types. Furthermore, in engineering contexts such as signal 
processing and data compression, it is often desirable to suppress noise 
or smooth irregular fluctuations. While traditional  Ces𝑎̀𝑎ro means apply 
uniform averaging, this may not suffice for highly variable data. In 
contrast, the 𝑞𝑞-Ces𝑎̀𝑎ro framework includes an adjustable 𝑞𝑞-parameter 
that allows the researcher to balance smoothing and the preservation of 
local details, offering greater versatility. In future work, the potential 
use of 𝑞𝑞-Ces𝑎̀𝑎ro summability in adaptive signal filtering, noise 
reduction and compression algorithms deserves further attention. 
Figure 1 already suggests that when 𝑞𝑞 < 1,  𝑞𝑞-Ces𝑎̀𝑎ro smoothing 
outperforms the classical scheme, especially in the presence of rapid 
oscillations. 

 
                                                   Figure 1 

Nevertheless, some limitations should be acknowledged. Calculations 
based on 𝑞𝑞-calculus such as 𝑞𝑞-differences or 𝑞𝑞-summability operators 
are typically more complicated than classical formulations, and proofs 
involving 𝑞𝑞-Ces𝑎̀𝑎ro matrices often require considerable technical 
effort. Moreover, the parameter 𝑞𝑞 is not universal; its choice crucially 
influences the outcome. Therefore, 𝑞𝑞 must be selected carefully 
according to the nature of the application, rather than chosen arbitrarily. 

Let 𝑏𝑏 = (𝑏𝑏𝑗𝑗) be sequence of partial sum of the series  ∑ 𝑢𝑢𝑖𝑖, and let  𝜑𝜑 =
(𝜑𝜑𝑗𝑗) be any sequence of positive real numbers, 𝜇𝜇 = (𝜇𝜇𝑗𝑗) be any 
bounded sequence of positive real numbers. Following Gökçe & 
Sarıgöl, (2018), the series ∑ 𝑢𝑢𝑖𝑖 is said to be summable |Λ, 𝜑𝜑 |(𝜇𝜇), if  

∑ 𝜑𝜑𝑗𝑗
𝜇𝜇𝑛𝑛−1|Λ𝑗𝑗 (𝑏𝑏) − Λ𝑗𝑗−1 (𝑏𝑏)|𝜇𝜇𝑛𝑛 <

∞

𝑗𝑗=1
∞. 

The summability method |Λ, 𝜑𝜑|(𝜇𝜇) is highly general and encompasses 
many well-known absolute summability methods as special cases, 
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depending on the choice of the matrix Λ and the sequences  𝜑𝜑 and 𝜇𝜇. 
For example, if one takes the triangle matrix 𝑇𝑇 instead of  Λ with 𝜇𝜇𝑗𝑗 =
𝑠𝑠 for all 𝑗𝑗,  the summability method |T, 𝜑𝜑|𝑠𝑠  is immediately obtained 
(Gökçe, 2022). Similarly, choosing the Euler matrix with 𝜇𝜇𝑗𝑗 = 𝑠𝑠 for all 
𝑗𝑗,  yields the summability methods |𝐸𝐸𝑟𝑟, 𝜑𝜑|𝑠𝑠  satisfying the condition  

∑ 𝜃𝜃𝑛𝑛
𝑠𝑠−1

∞

𝑛𝑛=1
|∑ (𝑛𝑛 − 1

𝑣𝑣 − 1) (1 − 𝑟𝑟)𝑛𝑛−𝑣𝑣𝑟𝑟𝑣𝑣𝑢𝑢𝜈𝜈

𝑛𝑛

𝜈𝜈=1
|

𝑠𝑠

< ∞, 

(Gökçe & Sarıgöl, 2020), if we decide on the weighted mean matrix 
instead of Λ, the summability method |Λ,  𝜃𝜃𝑛𝑛|(𝜇𝜇) is reduced to the 
|𝑁̅𝑁,  𝑝𝑝𝑛𝑛, 𝜃𝜃𝑛𝑛|(𝜇𝜇) satisfying the condition 

∑ 𝜃𝜃𝑛𝑛
𝜇𝜇𝑛𝑛−1

∞

𝑛𝑛=1
| 𝑝𝑝𝑛𝑛
𝑃𝑃𝑛𝑛𝑃𝑃𝑛𝑛−1

∑ 𝑃𝑃𝜈𝜈−1𝑢𝑢𝜈𝜈

𝑛𝑛

𝜈𝜈=1
|

𝜇𝜇𝑛𝑛

, 

(Gökçe & Sarıgöl, (2018)), if we decide on the Ces𝑎̀𝑎ro matrix instead 
of Λ with 𝜃𝜃𝑛𝑛 = 𝑛𝑛 for all 𝑛𝑛, the method is reduced to  |𝐶𝐶, 𝛼𝛼, 𝛽𝛽|(𝜇𝜇)  and 
the set of all series summable by this method is given by: 

∑ 𝑛𝑛𝜇𝜇𝑛𝑛−1 |∑ (𝐴𝐴𝑛𝑛−𝜈𝜈
𝜆𝜆−1

𝐴𝐴𝑛𝑛
𝜆𝜆+𝛽𝛽 − 𝐴𝐴𝑛𝑛−𝜈𝜈−1

𝜆𝜆−1

𝐴𝐴𝑛𝑛−1
𝜆𝜆+𝛽𝛽 ) 𝐴𝐴𝜈𝜈

𝛽𝛽𝑏𝑏𝜈𝜈

𝑛𝑛

𝜈𝜈=0
|

𝜇𝜇𝑛𝑛

< ∞,
∞

𝑛𝑛=1
 

(Gökçe & Sarıgöl, (2019)). In addition to the last chosing above, if 𝛽𝛽 =
0 and 𝜇𝜇𝑛𝑛 = 𝑠𝑠 for all 𝑛𝑛 is selected, the method |𝐶𝐶, 𝛼𝛼|𝑠𝑠  given by the 
condition  

∑ 1
𝑛𝑛 |∑ 𝐴𝐴𝑛𝑛−𝜈𝜈

𝜆𝜆−1

𝐴𝐴𝑛𝑛
𝜆𝜆 𝑣𝑣𝑢𝑢𝜈𝜈

𝑛𝑛

𝜈𝜈=0
|

𝑠𝑠

< ∞  
∞

𝑛𝑛=1
 

 studied by Sarıgöl is obtained, (Sarıgöl, 2016). 
 
Let 𝜆𝜆 = (𝜆𝜆𝑛𝑛) be a sequence and 𝑋𝑋 and 𝑌𝑌 be two summability methods. 
If  ∑ 𝜆𝜆𝑛𝑛𝑢𝑢𝑛𝑛 is summable 𝑌𝑌  whenever ∑ 𝑢𝑢𝑛𝑛 is summable the summability 
method 𝑋𝑋, then  𝜆𝜆  is said to be a summability factor of type (𝑋𝑋, 𝑌𝑌), and 
we denote it by 𝜆𝜆𝜆𝜆(𝑋𝑋, 𝑌𝑌). The problems of summability factors dealing 
with absolute 𝑞𝑞-Cesàro summability is the main subject of the study. 
Before moving on to the main theorems, let us recall the lemmas that 
will be used in the proofs: 
 
Lemma 1. (Stieglitz, Tietz, 1977) Let  1 <  𝑠𝑠 <  ∞.  Λ ∈ (𝑙𝑙𝑠𝑠, 𝑙𝑙) if and 
only if  

sup {∑ |∑ 𝜆𝜆𝑛𝑛𝑛𝑛
𝑛𝑛∈𝑁𝑁

|
𝑠𝑠∗

: 𝑁𝑁 ⊂ ℕ finite
∞

𝑗𝑗=0
}  < ∞. 

Lemma 2 (Sarıgöl, 2013) Let Λ = (𝜆𝜆𝑗𝑗𝑗𝑗) be an infinite matrix with 
complex components, 𝜚𝜚 = (𝜚𝜚𝑖𝑖) be a bounded sequence of positive 
numbers. If 𝑊𝑊𝜚𝜚 [Λ ] < ∞  or 𝐿𝐿𝜚𝜚 [Λ ] < ∞, then 

(2𝑚𝑚)−2𝑊𝑊𝜚𝜚 [Λ ] ≤ 𝐿𝐿𝜚𝜚 [Λ ] ≤ 𝑊𝑊𝑣𝑣 [Λ ], 

where 𝑚𝑚 = max{1, 2𝑀𝑀−1} , 𝑀𝑀 = sup𝑖𝑖 𝜚𝜚𝑖𝑖. 
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𝑊𝑊𝜚𝜚 [Λ ]  = ∑ (∑|𝜆𝜆𝑗𝑗𝑗𝑗|
𝑗𝑗=0

)
𝜚𝜚𝑖𝑖∞

𝑖𝑖=0
 

and 

𝐿𝐿𝜚𝜚 [Λ ] = sup {∑ |∑ 𝜆𝜆𝑗𝑗𝑗𝑗
𝑗𝑗∈𝐺𝐺

|
𝜚𝜚𝑖𝑖

: 𝐺𝐺 ⊂ ℕ finite
∞

𝑖𝑖=0
}. 

Lemma 3. (Maddox, 1970)  Λ ∈ ( 𝑙𝑙, 𝑙𝑙𝑠𝑠) if and only if   

sup
𝑗𝑗

∑|𝜆𝜆𝑛𝑛𝑛𝑛|𝑠𝑠
∞

𝑛𝑛=0
< ∞,         

where 1 ≤  𝑠𝑠 <  ∞. 
  

2. MAIN RESULTS 
In this part of the section, we introduce the absolute 𝑞𝑞-Ces𝑎̀𝑎ro 
summability method which combines the notion of absolute 
summability with the transformation matrix generated by the 𝑞𝑞-Ces𝑎̀𝑎ro 
matrix. Subsequently, the theorems expressing the necessary and 
sufficient conditions for 𝜆𝜆𝜆𝜆(|𝐶𝐶𝑞𝑞, 𝜑𝜑|𝑠𝑠, |𝐶𝐶𝑝𝑝, 𝛿𝛿|) and 𝜆𝜆𝜆𝜆(|𝐶𝐶𝑝𝑝, 𝛿𝛿|, |𝐶𝐶𝑞𝑞, 𝜑𝜑|𝑠𝑠), 
which are the main problem of the study, will be stated and proven. To 
obtain this method, let us take the sequence ∑ 𝑢𝑢𝑖𝑖  and its partial sums 
𝑏𝑏𝑗𝑗. Then we get  

𝛬𝛬ₙ(𝑏𝑏) =  ∑ 𝑐𝑐𝑛𝑛𝑛𝑛
𝑞𝑞 𝑏𝑏𝑖𝑖

𝑛𝑛

𝑖𝑖=0
= ∑ 𝑢𝑢𝑗𝑗

𝑛𝑛

𝑗𝑗=0
∑ 𝑞𝑞𝑖𝑖

[𝑛𝑛 + 1]𝑞𝑞

𝑛𝑛

𝑖𝑖=𝑗𝑗
= ∑ 𝑢𝑢𝑗𝑗

𝑛𝑛

𝑗𝑗=0
(1 −

[𝑗𝑗]𝑞𝑞
[𝑛𝑛 + 1]𝑞𝑞

) 

and so, 

    Δ𝛬𝛬𝑛𝑛(𝑏𝑏) = ∑ 𝑢𝑢𝑗𝑗

𝑛𝑛

𝑗𝑗=0
(1 −

[𝑗𝑗]𝑞𝑞
[𝑛𝑛 + 1]𝑞𝑞

) − ∑ 𝑢𝑢𝑗𝑗

𝑛𝑛−1

𝑗𝑗=0
(1 −

[𝑗𝑗]𝑞𝑞
[𝑛𝑛]𝑞𝑞

)     

= ∑
𝑞𝑞𝑛𝑛[𝑗𝑗]𝑞𝑞

[𝑛𝑛]𝑞𝑞[𝑛𝑛 + 1]𝑞𝑞

𝑛𝑛

𝑗𝑗=1
𝑢𝑢𝑗𝑗,     𝑛𝑛 > 0,             

   Δ𝛬𝛬0(𝑏𝑏) = 𝑢𝑢0. 
If 

∑ 𝜑𝜑𝑛𝑛
𝑠𝑠−1

∞

𝑛𝑛=0
| Δ𝛬𝛬𝑛𝑛(𝑏𝑏)|𝑠𝑠 < ∞, 

it is said that the series ∑ 𝑢𝑢𝑖𝑖 is summable by the method |𝐶𝐶𝑞𝑞, 𝜑𝜑|𝑠𝑠. Also, 
considering the transformation sequence (𝑇𝑇𝑛𝑛), it can be written that  the 
series ∑ 𝑢𝑢𝑖𝑖 is summable by  |𝐶𝐶𝑞𝑞, 𝜑𝜑|𝑠𝑠 if and only if  (𝑇𝑇𝑛𝑛)𝜖𝜖 𝑙𝑙𝑠𝑠. Here 

𝑇𝑇𝑛𝑛 = 𝜑𝜑𝑛𝑛
1 𝑠𝑠∗⁄ ∑

𝑞𝑞𝑛𝑛[𝑗𝑗]𝑞𝑞
[𝑛𝑛]𝑞𝑞[𝑛𝑛 + 1]𝑞𝑞

𝑛𝑛

𝑗𝑗=1
𝑢𝑢𝑗𝑗,    𝑛𝑛 > 0, 
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𝑊𝑊𝜚𝜚 [Λ ]  = ∑ (∑|𝜆𝜆𝑗𝑗𝑗𝑗|
𝑗𝑗=0

)
𝜚𝜚𝑖𝑖∞

𝑖𝑖=0
 

and 

𝐿𝐿𝜚𝜚 [Λ ] = sup {∑ |∑ 𝜆𝜆𝑗𝑗𝑗𝑗
𝑗𝑗∈𝐺𝐺

|
𝜚𝜚𝑖𝑖

: 𝐺𝐺 ⊂ ℕ finite
∞

𝑖𝑖=0
}. 

Lemma 3. (Maddox, 1970)  Λ ∈ ( 𝑙𝑙, 𝑙𝑙𝑠𝑠) if and only if   

sup
𝑗𝑗

∑|𝜆𝜆𝑛𝑛𝑛𝑛|𝑠𝑠
∞

𝑛𝑛=0
< ∞,         

where 1 ≤  𝑠𝑠 <  ∞. 
  

2. MAIN RESULTS 
In this part of the section, we introduce the absolute 𝑞𝑞-Ces𝑎̀𝑎ro 
summability method which combines the notion of absolute 
summability with the transformation matrix generated by the 𝑞𝑞-Ces𝑎̀𝑎ro 
matrix. Subsequently, the theorems expressing the necessary and 
sufficient conditions for 𝜆𝜆𝜆𝜆(|𝐶𝐶𝑞𝑞, 𝜑𝜑|𝑠𝑠, |𝐶𝐶𝑝𝑝, 𝛿𝛿|) and 𝜆𝜆𝜆𝜆(|𝐶𝐶𝑝𝑝, 𝛿𝛿|, |𝐶𝐶𝑞𝑞, 𝜑𝜑|𝑠𝑠), 
which are the main problem of the study, will be stated and proven. To 
obtain this method, let us take the sequence ∑ 𝑢𝑢𝑖𝑖  and its partial sums 
𝑏𝑏𝑗𝑗. Then we get  

𝛬𝛬ₙ(𝑏𝑏) =  ∑ 𝑐𝑐𝑛𝑛𝑛𝑛
𝑞𝑞 𝑏𝑏𝑖𝑖

𝑛𝑛

𝑖𝑖=0
= ∑ 𝑢𝑢𝑗𝑗

𝑛𝑛

𝑗𝑗=0
∑ 𝑞𝑞𝑖𝑖

[𝑛𝑛 + 1]𝑞𝑞

𝑛𝑛

𝑖𝑖=𝑗𝑗
= ∑ 𝑢𝑢𝑗𝑗

𝑛𝑛

𝑗𝑗=0
(1 −

[𝑗𝑗]𝑞𝑞
[𝑛𝑛 + 1]𝑞𝑞

) 

and so, 

    Δ𝛬𝛬𝑛𝑛(𝑏𝑏) = ∑ 𝑢𝑢𝑗𝑗

𝑛𝑛

𝑗𝑗=0
(1 −

[𝑗𝑗]𝑞𝑞
[𝑛𝑛 + 1]𝑞𝑞

) − ∑ 𝑢𝑢𝑗𝑗

𝑛𝑛−1

𝑗𝑗=0
(1 −

[𝑗𝑗]𝑞𝑞
[𝑛𝑛]𝑞𝑞

)     

= ∑
𝑞𝑞𝑛𝑛[𝑗𝑗]𝑞𝑞

[𝑛𝑛]𝑞𝑞[𝑛𝑛 + 1]𝑞𝑞

𝑛𝑛

𝑗𝑗=1
𝑢𝑢𝑗𝑗,     𝑛𝑛 > 0,             

   Δ𝛬𝛬0(𝑏𝑏) = 𝑢𝑢0. 
If 

∑ 𝜑𝜑𝑛𝑛
𝑠𝑠−1

∞

𝑛𝑛=0
| Δ𝛬𝛬𝑛𝑛(𝑏𝑏)|𝑠𝑠 < ∞, 

it is said that the series ∑ 𝑢𝑢𝑖𝑖 is summable by the method |𝐶𝐶𝑞𝑞, 𝜑𝜑|𝑠𝑠. Also, 
considering the transformation sequence (𝑇𝑇𝑛𝑛), it can be written that  the 
series ∑ 𝑢𝑢𝑖𝑖 is summable by  |𝐶𝐶𝑞𝑞, 𝜑𝜑|𝑠𝑠 if and only if  (𝑇𝑇𝑛𝑛)𝜖𝜖 𝑙𝑙𝑠𝑠. Here 

𝑇𝑇𝑛𝑛 = 𝜑𝜑𝑛𝑛
1 𝑠𝑠∗⁄ ∑

𝑞𝑞𝑛𝑛[𝑗𝑗]𝑞𝑞
[𝑛𝑛]𝑞𝑞[𝑛𝑛 + 1]𝑞𝑞

𝑛𝑛

𝑗𝑗=1
𝑢𝑢𝑗𝑗,    𝑛𝑛 > 0, 

 
 

𝑇𝑇0 = 𝜑𝜑0
1 𝑠𝑠∗⁄ 𝑢𝑢0. 

By making a few calculations, it can be seen that the inverse 
transformation of the transformation sequence (𝑇𝑇𝑛𝑛) is as follows: 

𝑢𝑢𝑛𝑛 = 𝑇𝑇𝑛𝑛
[𝑛𝑛 + 1]𝑞𝑞
𝜑𝜑𝑛𝑛
1 𝑠𝑠∗⁄ 𝑞𝑞𝑛𝑛

− 𝑇𝑇𝑛𝑛−1
[𝑛𝑛 − 1]𝑞𝑞
𝜑𝜑𝑛𝑛−1
1 𝑠𝑠∗⁄ 𝑞𝑞𝑛𝑛−1

, 𝑛𝑛 > 0,                    (2) 

𝑢𝑢0 = 𝜑𝜑0
−1 𝑠𝑠∗⁄ 𝑇𝑇0.       

Throughout the article, it is noted that (𝜑𝜑𝑗𝑗) and (𝛿𝛿𝑗𝑗) represent any 
sequences of positive numbers, and also  𝑠𝑠∗ indicates the conjugate of 
𝑠𝑠 that is  1 𝑠𝑠⁄ + 1 𝑠𝑠∗⁄ = 1 for 𝑠𝑠 > 0,  1 𝑠𝑠∗⁄ = 0 for  𝑠𝑠 = 1. 
 It can be easily seen that, in case of 𝑞𝑞 = 1 and  𝜑𝜑𝑛𝑛 = 𝑛𝑛, the 
summability method |𝐶𝐶𝑞𝑞, 𝜑𝜑|𝑠𝑠 is reduced the well-known classical 
absolute Ces𝑎̀𝑎ro method |𝐶𝐶, 1|𝑠𝑠, (Rhoades,1998). 
For simplicity, throughout the rest of the article, it will be used that 

[𝑗𝑗]𝑝𝑝[𝑗𝑗 + 1]𝑞𝑞 − [𝑗𝑗 + 1]𝑝𝑝[𝑗𝑗]𝑞𝑞 = Δ𝑝𝑝𝑝𝑝(𝑗𝑗). 
 
Theorem 1.  Assume that 1 <  𝑠𝑠 <  ∞.  Then,  𝜆𝜆𝜆𝜆(|𝐶𝐶𝑞𝑞, 𝜑𝜑|𝑠𝑠, |𝐶𝐶𝑝𝑝, 𝛿𝛿|) if 
and only if 

∑(|𝜑𝜑𝑗𝑗
−1 𝑠𝑠∗⁄ 𝑝𝑝𝑗𝑗[𝑗𝑗 + 1]𝑞𝑞

𝑞𝑞𝑗𝑗[𝑗𝑗 + 1]𝑝𝑝
𝜆𝜆𝑗𝑗|

∞

𝑗𝑗=0

+ |
𝜎𝜎𝑗𝑗+1
(𝑝𝑝)

𝜑𝜑𝑗𝑗
1 𝑠𝑠∗⁄ 𝑞𝑞𝑗𝑗

(𝜆𝜆𝑗𝑗Δ𝑝𝑝𝑝𝑝(𝑗𝑗) + ∆𝜆𝜆𝑗𝑗[𝑗𝑗 + 1]𝑝𝑝[𝑗𝑗]𝑞𝑞)|)
𝑠𝑠∗

< ∞ 

  where 

𝜎𝜎𝑗𝑗+1
(𝑝𝑝) =

{
  
 

  
 1

𝑗𝑗 + 1 , 𝑝𝑝 = 1

𝑝𝑝𝑗𝑗+1
[𝑗𝑗 + 1]𝑝𝑝

, 𝑝𝑝 < 1

1
[𝑗𝑗 + 1]𝑝𝑝

, 𝑝𝑝 > 1.

 

 
Proof. 

 Assume that  𝑇𝑇𝑛𝑛 and 𝑡𝑡𝑛𝑛 are the transformation sequences of |𝐶𝐶𝑞𝑞, 𝜑𝜑|𝑠𝑠 
and |𝐶𝐶𝑝𝑝, 𝛿𝛿|  means of series ∑𝑢𝑢𝑛𝑛and ∑𝜆𝜆𝑛𝑛𝑢𝑢𝑛𝑛 respectively, that is  

𝑇𝑇𝑛𝑛 = 𝜑𝜑𝑛𝑛
1 𝑠𝑠∗⁄ ∑

𝑞𝑞𝑛𝑛[𝑗𝑗]𝑞𝑞
[𝑛𝑛]𝑞𝑞[𝑛𝑛 + 1]𝑞𝑞

𝑛𝑛

𝑗𝑗=1
𝑢𝑢𝑗𝑗, 𝑡𝑡𝑛𝑛 =∑

𝑝𝑝𝑛𝑛[𝑗𝑗]𝑝𝑝
[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝

𝑛𝑛

𝑗𝑗=1
𝜆𝜆𝑗𝑗𝑢𝑢𝑗𝑗. 

Considering the inverse transformation of  𝑇𝑇𝑛𝑛, it is easily obtained that 

𝑡𝑡𝑛𝑛 =∑
𝑝𝑝𝑛𝑛[𝑗𝑗]𝑝𝑝

[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝

𝑛𝑛

𝑗𝑗=1
𝜆𝜆𝑗𝑗𝑢𝑢𝑗𝑗                                                                              
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=∑
𝑝𝑝𝑛𝑛[𝑗𝑗]𝑝𝑝𝜆𝜆𝑗𝑗

[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝

𝑛𝑛

𝑗𝑗=1
(𝑇𝑇𝑗𝑗

[𝑗𝑗 + 1]𝑞𝑞
𝜑𝜑𝑗𝑗
1 𝑠𝑠∗⁄ 𝑞𝑞𝑗𝑗

− 𝑇𝑇𝑗𝑗−1
[𝑗𝑗 − 1]𝑞𝑞
𝜑𝜑𝑗𝑗−1
1 𝑠𝑠∗⁄ 𝑞𝑞𝑗𝑗−1

)                         

    = ∑
𝑝𝑝𝑛𝑛[𝑗𝑗]𝑝𝑝𝜆𝜆𝑗𝑗

[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝

𝑛𝑛

𝑗𝑗=1

[𝑗𝑗 + 1]𝑞𝑞
𝜑𝜑𝑗𝑗
1 𝑠𝑠∗⁄ 𝑞𝑞𝑗𝑗

𝑇𝑇𝑗𝑗 −∑
𝑝𝑝𝑛𝑛[𝑗𝑗 + 1]𝑝𝑝𝜆𝜆𝑗𝑗+1
[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝

𝑛𝑛−1

𝑗𝑗=0

[𝑗𝑗]𝑞𝑞
𝜑𝜑𝑗𝑗
1 𝑠𝑠∗⁄ 𝑞𝑞𝑗𝑗

 𝑇𝑇𝑗𝑗         

   = 𝜑𝜑𝑛𝑛
−1 𝑠𝑠∗⁄ 𝑝𝑝𝑛𝑛[𝑛𝑛 + 1]𝑞𝑞

𝑞𝑞𝑛𝑛[𝑛𝑛 + 1]𝑝𝑝
𝜆𝜆𝑛𝑛𝑇𝑇𝑛𝑛                                                                            

 +∑
𝜑𝜑𝑗𝑗
−1 𝑠𝑠∗⁄ 𝑝𝑝𝑛𝑛

𝑞𝑞𝑗𝑗[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝
(𝜆𝜆𝑗𝑗[𝑗𝑗]𝑝𝑝[𝑗𝑗 + 1]𝑞𝑞 − 𝜆𝜆𝑗𝑗+1[𝑗𝑗 + 1]𝑝𝑝[𝑗𝑗]𝑞𝑞)

𝑛𝑛−1

𝑗𝑗=1
𝑇𝑇𝑗𝑗,        

𝑡𝑡0 = 𝜑𝜑0
−1 𝑠𝑠∗⁄ 𝜆𝜆0𝑇𝑇0. 

Hence, it can be written that  

𝑡𝑡𝑛𝑛 =∑𝑎𝑎𝑛𝑛𝑛𝑛
𝑛𝑛

𝑗𝑗=0
𝑇𝑇𝑗𝑗      

where 

𝑎𝑎𝑛𝑛𝑛𝑛 =

{
  
 

  
 𝜑𝜑𝑛𝑛

−1 𝑠𝑠∗⁄ 𝑝𝑝𝑛𝑛[𝑛𝑛 + 1]𝑞𝑞
𝑞𝑞𝑛𝑛[𝑛𝑛 + 1]𝑝𝑝

𝜆𝜆𝑛𝑛,                                               𝑗𝑗 = 𝑛𝑛

𝜑𝜑𝑗𝑗
−1 𝑠𝑠∗⁄ 𝑝𝑝𝑛𝑛

𝑞𝑞𝑗𝑗[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝
(𝜆𝜆𝑗𝑗Δ𝑝𝑝𝑝𝑝(𝑗𝑗) + ∆𝜆𝜆𝑗𝑗[𝑗𝑗 + 1]𝑝𝑝[𝑗𝑗]𝑞𝑞), 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛 − 1

0,                                                                               𝑗𝑗 > 𝑛𝑛.

 

So, it follows from Lemma 1 and Lemma 2 that  (𝑡𝑡𝑛𝑛) ∈ 𝑙𝑙 whenever 
(𝑇𝑇𝑛𝑛) ∈  𝑙𝑙𝑠𝑠 if and only if the matrix 𝐴𝐴 ∈ (𝑙𝑙𝑠𝑠, 𝑙𝑙) or equivalent the condition   

∑(|𝜑𝜑𝑗𝑗
−1 𝑠𝑠∗⁄ 𝑝𝑝𝑗𝑗[𝑗𝑗 + 1]𝑞𝑞

𝑞𝑞𝑗𝑗[𝑗𝑗 + 1]𝑝𝑝
𝜆𝜆𝑗𝑗|  

∞

𝑗𝑗=0
+ ∑ |

𝜑𝜑𝑗𝑗
−1 𝑠𝑠∗⁄ 𝑝𝑝𝑛𝑛

𝑞𝑞𝑗𝑗[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝
(𝜆𝜆𝑗𝑗Δ𝑝𝑝𝑝𝑝(𝑗𝑗)

∞

𝑛𝑛=𝑗𝑗+1
 

+∆𝜆𝜆𝑗𝑗[𝑗𝑗 + 1]𝑝𝑝[𝑗𝑗]𝑞𝑞)|)
𝑠𝑠∗ < ∞             (3) 

 holds. 
Here, if we consider the series  ∑ 𝑝𝑝𝑛𝑛

[𝑛𝑛]𝑝𝑝[𝑛𝑛+1]𝑝𝑝
∞
𝑛𝑛=𝑗𝑗+1   as follows  

∑ 𝑝𝑝𝑛𝑛
[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝

∞

𝑛𝑛=𝑗𝑗+1
=

{
 
 

 
 ∑ (1𝑛𝑛 −

1
𝑛𝑛 + 1)

∞

𝑛𝑛=𝑗𝑗+1
, 𝑝𝑝 = 1

∑ ( 1
1 − 𝑝𝑝𝑛𝑛 −

1
1 − 𝑝𝑝𝑛𝑛+1) , 𝑝𝑝 < 1 or 𝑝𝑝 > 1,

∞

𝑛𝑛=𝑗𝑗+1

 

the sum of the series is obtained as follows for each value of 𝑝𝑝: 
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=∑
𝑝𝑝𝑛𝑛[𝑗𝑗]𝑝𝑝𝜆𝜆𝑗𝑗

[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝

𝑛𝑛

𝑗𝑗=1
(𝑇𝑇𝑗𝑗

[𝑗𝑗 + 1]𝑞𝑞
𝜑𝜑𝑗𝑗
1 𝑠𝑠∗⁄ 𝑞𝑞𝑗𝑗

− 𝑇𝑇𝑗𝑗−1
[𝑗𝑗 − 1]𝑞𝑞
𝜑𝜑𝑗𝑗−1
1 𝑠𝑠∗⁄ 𝑞𝑞𝑗𝑗−1

)                         

    = ∑
𝑝𝑝𝑛𝑛[𝑗𝑗]𝑝𝑝𝜆𝜆𝑗𝑗

[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝

𝑛𝑛

𝑗𝑗=1

[𝑗𝑗 + 1]𝑞𝑞
𝜑𝜑𝑗𝑗
1 𝑠𝑠∗⁄ 𝑞𝑞𝑗𝑗

𝑇𝑇𝑗𝑗 −∑
𝑝𝑝𝑛𝑛[𝑗𝑗 + 1]𝑝𝑝𝜆𝜆𝑗𝑗+1
[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝

𝑛𝑛−1

𝑗𝑗=0

[𝑗𝑗]𝑞𝑞
𝜑𝜑𝑗𝑗
1 𝑠𝑠∗⁄ 𝑞𝑞𝑗𝑗

 𝑇𝑇𝑗𝑗         

   = 𝜑𝜑𝑛𝑛
−1 𝑠𝑠∗⁄ 𝑝𝑝𝑛𝑛[𝑛𝑛 + 1]𝑞𝑞

𝑞𝑞𝑛𝑛[𝑛𝑛 + 1]𝑝𝑝
𝜆𝜆𝑛𝑛𝑇𝑇𝑛𝑛                                                                            

 +∑
𝜑𝜑𝑗𝑗
−1 𝑠𝑠∗⁄ 𝑝𝑝𝑛𝑛

𝑞𝑞𝑗𝑗[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝
(𝜆𝜆𝑗𝑗[𝑗𝑗]𝑝𝑝[𝑗𝑗 + 1]𝑞𝑞 − 𝜆𝜆𝑗𝑗+1[𝑗𝑗 + 1]𝑝𝑝[𝑗𝑗]𝑞𝑞)

𝑛𝑛−1

𝑗𝑗=1
𝑇𝑇𝑗𝑗,        

𝑡𝑡0 = 𝜑𝜑0
−1 𝑠𝑠∗⁄ 𝜆𝜆0𝑇𝑇0. 

Hence, it can be written that  

𝑡𝑡𝑛𝑛 =∑𝑎𝑎𝑛𝑛𝑛𝑛
𝑛𝑛

𝑗𝑗=0
𝑇𝑇𝑗𝑗      

where 

𝑎𝑎𝑛𝑛𝑛𝑛 =

{
  
 

  
 𝜑𝜑𝑛𝑛

−1 𝑠𝑠∗⁄ 𝑝𝑝𝑛𝑛[𝑛𝑛 + 1]𝑞𝑞
𝑞𝑞𝑛𝑛[𝑛𝑛 + 1]𝑝𝑝

𝜆𝜆𝑛𝑛,                                               𝑗𝑗 = 𝑛𝑛

𝜑𝜑𝑗𝑗
−1 𝑠𝑠∗⁄ 𝑝𝑝𝑛𝑛

𝑞𝑞𝑗𝑗[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝
(𝜆𝜆𝑗𝑗Δ𝑝𝑝𝑝𝑝(𝑗𝑗) + ∆𝜆𝜆𝑗𝑗[𝑗𝑗 + 1]𝑝𝑝[𝑗𝑗]𝑞𝑞), 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛 − 1

0,                                                                               𝑗𝑗 > 𝑛𝑛.

 

So, it follows from Lemma 1 and Lemma 2 that  (𝑡𝑡𝑛𝑛) ∈ 𝑙𝑙 whenever 
(𝑇𝑇𝑛𝑛) ∈  𝑙𝑙𝑠𝑠 if and only if the matrix 𝐴𝐴 ∈ (𝑙𝑙𝑠𝑠, 𝑙𝑙) or equivalent the condition   

∑(|𝜑𝜑𝑗𝑗
−1 𝑠𝑠∗⁄ 𝑝𝑝𝑗𝑗[𝑗𝑗 + 1]𝑞𝑞

𝑞𝑞𝑗𝑗[𝑗𝑗 + 1]𝑝𝑝
𝜆𝜆𝑗𝑗|  

∞

𝑗𝑗=0
+ ∑ |

𝜑𝜑𝑗𝑗
−1 𝑠𝑠∗⁄ 𝑝𝑝𝑛𝑛

𝑞𝑞𝑗𝑗[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝
(𝜆𝜆𝑗𝑗Δ𝑝𝑝𝑝𝑝(𝑗𝑗)

∞

𝑛𝑛=𝑗𝑗+1
 

+∆𝜆𝜆𝑗𝑗[𝑗𝑗 + 1]𝑝𝑝[𝑗𝑗]𝑞𝑞)|)
𝑠𝑠∗ < ∞             (3) 

 holds. 
Here, if we consider the series  ∑ 𝑝𝑝𝑛𝑛

[𝑛𝑛]𝑝𝑝[𝑛𝑛+1]𝑝𝑝
∞
𝑛𝑛=𝑗𝑗+1   as follows  

∑ 𝑝𝑝𝑛𝑛
[𝑛𝑛]𝑝𝑝[𝑛𝑛 + 1]𝑝𝑝

∞

𝑛𝑛=𝑗𝑗+1
=

{
 
 

 
 ∑ (1𝑛𝑛 −

1
𝑛𝑛 + 1)

∞

𝑛𝑛=𝑗𝑗+1
, 𝑝𝑝 = 1

∑ ( 1
1 − 𝑝𝑝𝑛𝑛 −

1
1 − 𝑝𝑝𝑛𝑛+1) , 𝑝𝑝 < 1 or 𝑝𝑝 > 1,

∞

𝑛𝑛=𝑗𝑗+1

 

the sum of the series is obtained as follows for each value of 𝑝𝑝: 

 
 

𝜎𝜎𝑗𝑗+1
(𝑝𝑝) =

{
  
 

  
 1

𝑗𝑗 + 1 , 𝑝𝑝 = 1

𝑝𝑝𝑗𝑗+1
[𝑗𝑗 + 1]𝑝𝑝

, 𝑝𝑝 < 1

1
[𝑗𝑗 + 1]𝑝𝑝

, 𝑝𝑝 > 1.

 

So, the condition (3) is reduced to  

∑(|𝜑𝜑𝑗𝑗
−1 𝑠𝑠∗⁄ 𝑝𝑝𝑗𝑗[𝑗𝑗 + 1]𝑞𝑞

𝑞𝑞𝑗𝑗[𝑗𝑗 + 1]𝑝𝑝
𝜆𝜆𝑗𝑗|

∞

𝑗𝑗=0

+ |
𝜎𝜎𝑗𝑗+1
(𝑝𝑝)

𝜑𝜑𝑗𝑗
1 𝑠𝑠∗⁄ 𝑞𝑞𝑗𝑗

(𝜆𝜆𝑗𝑗Δ𝑝𝑝𝑝𝑝(𝑗𝑗) + ∆𝜆𝜆𝑗𝑗[𝑗𝑗 + 1]𝑝𝑝[𝑗𝑗]𝑞𝑞)|)
𝑠𝑠∗

< ∞. 

 
Theorem 2.  Let 1 ≤  𝑠𝑠 <  ∞.  The necessary and sufficient condition 
for  𝜆𝜆𝜆𝜆(|𝐶𝐶𝑝𝑝, 𝛿𝛿|, |𝐶𝐶𝑞𝑞, 𝜑𝜑|𝑠𝑠)  is 

sup
𝑗𝑗
{|𝜑𝜑𝑗𝑗

1 𝑠𝑠∗⁄ 𝑞𝑞𝑗𝑗[𝑗𝑗 + 1]𝑝𝑝
𝑝𝑝𝑗𝑗[𝑗𝑗 + 1]𝑞𝑞

𝜆𝜆𝑗𝑗|
𝑠𝑠

+ ∑ | 𝜑𝜑𝑛𝑛
1 𝑠𝑠∗⁄ 𝑞𝑞𝑛𝑛

𝑝𝑝𝑗𝑗[𝑛𝑛]𝑞𝑞[𝑛𝑛 + 1]𝑞𝑞

∞

𝑛𝑛=𝑗𝑗+1
(𝜆𝜆𝑗𝑗Δ𝑞𝑞𝑞𝑞(𝑗𝑗) 

                           +∆𝜆𝜆𝑗𝑗[𝑗𝑗 + 1]𝑞𝑞[𝑗𝑗]𝑝𝑝)|
𝑠𝑠}  < ∞.    (4) 

Proof. 
Assume that 𝑇̂𝑇𝑛𝑛 and 𝑡̂𝑡𝑛𝑛 are the transformation sequences of |𝐶𝐶𝑞𝑞, 𝜑𝜑|𝑠𝑠 and 
|𝐶𝐶𝑝𝑝, 𝛿𝛿| means of series ∑𝜆𝜆𝑛𝑛𝑢𝑢𝑛𝑛  and ∑𝑢𝑢𝑛𝑛, respectively. 
Using the inverse transformation of  𝑡̂𝑡𝑛𝑛, it is obtained that for all 𝑛𝑛 ≥
 1: 
 

𝑇̂𝑇𝑛𝑛 =∑
𝜑𝜑𝑛𝑛
1 𝑠𝑠∗⁄ 𝑞𝑞𝑛𝑛[𝑗𝑗]𝑞𝑞

[𝑛𝑛]𝑞𝑞[𝑛𝑛 + 1]𝑞𝑞

𝑛𝑛

𝑗𝑗=1
𝜆𝜆𝑗𝑗𝑢𝑢𝑗𝑗

=∑
𝜑𝜑𝑛𝑛
1 𝑠𝑠∗⁄ 𝑞𝑞𝑛𝑛[𝑗𝑗]𝑞𝑞

[𝑛𝑛]𝑞𝑞[𝑛𝑛 + 1]𝑞𝑞
𝜆𝜆𝑗𝑗

𝑛𝑛

𝑗𝑗=1
(𝑡̂𝑡𝑗𝑗

[𝑗𝑗 + 1]𝑝𝑝
𝑝𝑝𝑗𝑗 − 𝑡̂𝑡𝑗𝑗−1

[𝑗𝑗 − 1]𝑝𝑝
𝑝𝑝𝑗𝑗−1 )  

= 𝜑𝜑𝑛𝑛
1 𝑠𝑠∗⁄ ∑

𝑞𝑞𝑛𝑛[𝑗𝑗]𝑞𝑞
[𝑛𝑛]𝑞𝑞[𝑛𝑛 + 1]𝑞𝑞

𝜆𝜆𝑗𝑗
𝑛𝑛

𝑗𝑗=1
𝑡̂𝑡𝑗𝑗
[𝑗𝑗 + 1]𝑝𝑝
𝑝𝑝𝑗𝑗

− 𝜑𝜑𝑛𝑛
1 𝑠𝑠∗⁄ ∑

𝑞𝑞𝑛𝑛[𝑗𝑗 + 1]𝑞𝑞
[𝑛𝑛]𝑞𝑞[𝑛𝑛 + 1]𝑞𝑞

𝑛𝑛−1

𝑗𝑗=0
𝑡̂𝑡𝑗𝑗𝜆𝜆𝑗𝑗+1

[𝑗𝑗]𝑝𝑝
𝑝𝑝𝑗𝑗                   

= 𝜑𝜑𝑛𝑛
1 𝑠𝑠∗⁄ 𝑞𝑞𝑛𝑛[𝑛𝑛 + 1]𝑝𝑝

𝑝𝑝𝑛𝑛[𝑛𝑛 + 1]𝑞𝑞
𝜆𝜆𝑛𝑛𝑡̂𝑡𝑛𝑛

+ 𝜑𝜑𝑛𝑛
1 𝑠𝑠∗⁄ ∑ 𝑞𝑞𝑛𝑛

𝑝𝑝𝑗𝑗[𝑛𝑛]𝑞𝑞[𝑛𝑛 + 1]𝑞𝑞
(𝜆𝜆𝑗𝑗[𝑗𝑗]𝑞𝑞[𝑗𝑗 + 1]𝑝𝑝

𝑛𝑛−1

𝑗𝑗=1
− 𝜆𝜆𝑗𝑗+1[𝑗𝑗 + 1]𝑞𝑞[𝑗𝑗]𝑝𝑝) 𝑡̂𝑡𝑗𝑗, 
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𝑇̂𝑇0 = 𝜑𝜑0
1 𝑠𝑠∗⁄ 𝜆𝜆0𝑡̂𝑡0. 

So, it can be written that  

𝑇̂𝑇𝑛𝑛 =∑𝑏𝑏𝑛𝑛𝑛𝑛
𝑛𝑛

𝑗𝑗=0
𝑡̂𝑡𝑗𝑗,    

where 

𝑏𝑏𝑛𝑛𝑛𝑛 =

{
 
 

 
 𝜑𝜑𝑛𝑛

1 𝑠𝑠∗⁄ 𝑞𝑞𝑛𝑛[𝑛𝑛 + 1]𝑝𝑝
𝑝𝑝𝑛𝑛[𝑛𝑛 + 1]𝑞𝑞

𝜆𝜆𝑛𝑛,                                               𝑗𝑗 = 𝑛𝑛

𝜑𝜑𝑛𝑛
1 𝑠𝑠∗⁄ 𝑞𝑞𝑛𝑛

𝑝𝑝𝑗𝑗[𝑛𝑛]𝑞𝑞[𝑛𝑛 + 1]𝑞𝑞
(𝜆𝜆𝑗𝑗Δ𝑞𝑞𝑞𝑞(𝑗𝑗) + ∆𝜆𝜆𝑗𝑗[𝑗𝑗 + 1]𝑞𝑞[𝑗𝑗]𝑝𝑝) , 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛 − 1

0,                                                                               𝑗𝑗 > 𝑛𝑛.

 

It follows from Lemma 3 that the condition (4) is immediately obtained 
which completes the proof.  
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𝑇̂𝑇0 = 𝜑𝜑0
1 𝑠𝑠∗⁄ 𝜆𝜆0𝑡̂𝑡0. 

So, it can be written that  

𝑇̂𝑇𝑛𝑛 =∑𝑏𝑏𝑛𝑛𝑛𝑛
𝑛𝑛

𝑗𝑗=0
𝑡̂𝑡𝑗𝑗,    

where 

𝑏𝑏𝑛𝑛𝑛𝑛 =

{
 
 

 
 𝜑𝜑𝑛𝑛

1 𝑠𝑠∗⁄ 𝑞𝑞𝑛𝑛[𝑛𝑛 + 1]𝑝𝑝
𝑝𝑝𝑛𝑛[𝑛𝑛 + 1]𝑞𝑞

𝜆𝜆𝑛𝑛,                                               𝑗𝑗 = 𝑛𝑛

𝜑𝜑𝑛𝑛
1 𝑠𝑠∗⁄ 𝑞𝑞𝑛𝑛

𝑝𝑝𝑗𝑗[𝑛𝑛]𝑞𝑞[𝑛𝑛 + 1]𝑞𝑞
(𝜆𝜆𝑗𝑗Δ𝑞𝑞𝑞𝑞(𝑗𝑗) + ∆𝜆𝜆𝑗𝑗[𝑗𝑗 + 1]𝑞𝑞[𝑗𝑗]𝑝𝑝) , 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛 − 1

0,                                                                               𝑗𝑗 > 𝑛𝑛.

 

It follows from Lemma 3 that the condition (4) is immediately obtained 
which completes the proof.  
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