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Fikret OKUTUCU, Koray ULGEN

1.INTRODUCTION

The theory of curves has been the subject of numerous areas' and
geometry's recent investigations. Examining various geometric
properties in Euclidean space using the theory of curves, which is the
basis of differential geometry, and the Serret-Frenet frame of a curve,
is a method of dealing with many geometric structures. Thus, Euclidean
geometry has added many concepts to itself by walking on the theory
of curves. These are topics such as the Bertrand curve, involute-evolute
curve, helix and slant helix etc. In fact, the theory of curves and
obtaining various geometric models of a curve using the Serret-Frenet
frame have been used not only in geometry (and therefore mathematics)
but also in different fields such as physics, biology and engineering. On
the other hand, the theory of curves and the analysis of various
geometric models in different spaces, namely Lorentz and Minkowski
spaces, using the Serret-Frenet frame of a curve and presenting new
theories are the methods followed by differential geometry. In
particular, the fact that the curves in the structures of Lorentz and
Minkowski spaces and their Serret-Frenet frame contain more special
situations than Euclidean space, allowing for various situations and
more study areas. From this point of view, geometry offers a
tremendous field of study.

Many researchers who specifically research the literature well can see
that helix and slant helix issues have been proven by building many
theories in Lorentz and Minkowski spaces. Although the subject of slant
helices has been discussed in the literature, it has not been studied in a
comprehensive manner. This lack of detailed treatment forms the main
motivation of the present study. Slant helices were first introduced as a

generalization of classical helices. k- and (k,m)—type slant helices

have been added to the literature in recent years, after the slant helices.
Akgiin [1] introduced the concept of new kind Frenet curves within the
frame of Minkowski space. Ali and Onder [2] provided
characterizations for rectifying space-like curves in Minkowski space-

time. Bulut and Eker [3] developed the theory of k- and (k,m)—type

slant helices with respect to the Lorentz-Darboux frame. The geometry
of special helices on equiform differential geometry of timelike curves
was discussed by Bulut [4]. Bulut and Tartik [5] studied (k,m)-type slant
helices by employing the parallel transport frame in Euclidean 4-space.
The structure of slant helices relative to the Ed-frame in Minkowski 4-
space was analyzed by Bulut [6]. Bulut and Bektas [7] investigated
special helices arising from the equiform differential geometry of
spacelike curves in Minkowski space-time. Bulut [8] formulated non-
linear differential equations based on the Darboux vector approach.
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Camci, Ilarslan, Kula, and Hacisalihoglu [9] examined harmonic
curvatures and generalized helices in four-dimensional Euclidean
space. Dildiil [10] analyzed vector fields and planes in R* that act
analogously to the Darboux vector. Izumiya and Takeuchi [11]
introduced novel types of special curves and associated developable
surfaces. Keles, Yiiksel Perktas, and Kili¢ [12] explored the properties
of biharmonic curves in LP-Sasakian manifolds. O’Neill [13] provided
a comprehensive treatment of semi-Riemannian geometry with
significant applications to the theory of relativity. Oztiirk, Giirpinar, and
Arslan [14] proposed a novel characterization of curves within
Euclidean 4-space. Walrave [15] conducted an extensive study on
curves and surfaces in Minkowski space through his doctoral
dissertation. Williams and Stein [16] discussed a triple product of
vectors within four-dimensional space. Yayli, Gok, and Hacisalihoglu
[17] introduced extended rectifying curves as a new class of modified

Darboux vectors. Yilmaz and Bektas [18] investigated (k,m)— type

slant helices associated with partially null and pseudo null curves in
Minkowski space. Yilmaz and Bektas [19] further contributed to the
understanding of slant helices of (k,m)-type in four-dimensional
Euclidean space.

In this paper, we explore the properties of k- type slant helices in 4-
dimensional Minkowski space R}, B, is time-like vector, focusing on

the case where the playing role Darboux vector. This vector plays role
as the Darboux vector in 4-dimensional Minkowski space R}, and using
in the geometric characterization of slant helices. We also derive non-
linear equations which provided several characterizations of k- type

slant helices of curves in which the vector B, is time-like, in accordance

with the Frenet frame fields associated. Furthermore, we offer an
analysis of the curvature structure of these slant helices, aiming to
deepen the understanding of their behavior within Lorentzian geometry.
The results presented here contribute to the broader understanding of
curve theory in Minkowski 4-space and open the door to further
exploration of k- type slant helices under various geometric
constraints. Additionally, numerical examples are provided to illustrate
the applications of the theoretical results. The figures are obtained using
the computed values of the curvatures. In Examples 1 and 2, unit speed

B, is time-like curves are considered, and their curvatures and related

invariants are explicitly computed. Using these values, the
corresponding nonlinear differential equations with the given
coefficients are solved. Approximate solution curves for Examples 1
and 2 are then drawn and visualized in four-dimensional space using
the R programming language. In both examples, the objective is to
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demonstrate the applicability of the theoretical findings, particularly the
solutions of the nonlinear differential equations associated with the

curvature functions, to specific B, is time-like curves and their

visualization in higher-dimensional spaces.

2.GENERAL PROPERTIES OF METHOD

In this part, we introduced some basic definition for Minkowski space.
The Minkowski space R{ is the standard vector space equipped with an
indefinite flat metric given by:
() =daj + da3 +da3 —da;,

where (a;,a;,as, a,) is a rectangular coordinate system of Rj}. A
vector u in R is called a space-like, time-like or null (light-like), if
holds {(u,u) = 0, {u,u) < 0 or {u,u) = 0 (u # 0) respectively. The
norm of the vector u is given by Il u lI= \/{w,u)|. if (u, w) =0, then
two vectors, u and w are said to be orthogonal. If all of the velocity
vectors a’(s) associated with an arbitrary curve a:I — R} are space-
like, time-like, or null, then the curve can be respectively space-like,
time-like, or null. Let {T, N,B,,B,} be the moving Frenet frame along
the curve a(s) in Rf. Then the vector fields T,N,B,, B, are the
tangent, the principal normal, the first binormal and the second
binormal vector fields respectively. Let a be a space-like curve in R7,
parametrised by the arc length function of s. The following Lemma 1
follow for the time-like curve e in [15].

Lemma 1. Let the vector N be space-like and B, be time-like. In this
instance, @(s) is a time-like curve with Frenet equations

T'=kN

N'=-kT +k,B,
B' =k,N +k,B, (1)
le =kB,

for which there is only one Frenet frame T, N, By, By where T, N, B; and
B, are mutually orthogonal vectors satisfying the equations
<T,T >=<N,N >=<B,,B, >=1 and <B,B, >=-1. Recall that the
functions k; = k,(s), k, = k,(s) and k3 = k3(s) are called the first,
second and third curvature of the time-like curve a(s) respectively and
we will assume throughout this work that all the three curvatures satisfy
ki(s) #0, 1 <i<3in[l5].

LetussetthatV; =T,V, = N, V3 = By, V, = B,.

Definition 1. A time-like curve y(s) parametrized by arc-length s with

Frenet frame {V;,V,,V5,V,} (or with Darboux vector fields
{D;,D,, D3, D,}) in Minkowski space R7 is called a k- type slant helix

10
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(or is called a k-type Darboux slant helix) for k € {1,2,3,4} provided
that the subsequent holds true for
(Vi, U) = constant (or (D, U) = constant)

and there is a non-zero fixed vector U € R} in [18]. In this section, we
define Darboux vector fields by using Lemma along a regular curve in
R?. By using k —type slant helices we obtain some non-linear first
order differential equations. Let y be a unit speed curve as given in the
Lemma and {T, N, B,, B,} be the Frenet frame along the curve y where
the curvatures kq, k,, k3 are non-zero everywhere. Now we can define
following vector fields along y:

D1 = B2

Dz = sz + lel (2)
D3 = k3N + szz

D4 = _T

where {D;, D,, D3, D,} is linearly independent along y in [1].
Definition 2. Let y(s) be an R curve. If the position vector of ¥ (s) is
always in the orthogonal complement of its principal normal vector
field, it is referred to as a rectifying curve; if it is always in the
orthogonal complement of its first binormal vector field, it is referred
to as an osculating curve of the first sort in [14].

2.1.NON-LINEAR DIFFERENTIAL EQUATIONS OF K-TYPE SLANT
HELICES

In this section, we calculate non-linear equation according to Frenet
vectors and curvatures of curves in Minkowski space R7.

Theorem 1. Assume that y is a curve that the vector N be space-like
and B, be time-like with a Frenet frame of {T, N, B, B,} in Rf. There

is the non-linear equation,

1
o2 N2 =0

if the curve vy is a 1-type slant helix and a 1-type Darboux slant helix in
2

k K
RT where y = k—l and p = — — 1 because ¢, K are constants.
2 1

Proof. In R}, let y = y(s) be a l-type slant helix and a 1-type
Darboux slant helix. If U is a definite direction that is not zero, then

(T,U) = ¢, 3)
is a constant along the curve y = y(s). By setting (2) in (3), we find
(Dg, U) = —c4.
Differentiating (3) with respect to s, we get
(T',U) = 0. (4)
Using equation (1), we find the following equation:
k{(N,U) =0

and k; # 0, we obtain
(N,U) = 0. (5)

11
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Differentiating (5) with respect to s and using equations (2) and (3), we
have

_klcl + k2<B1' U) = 0
it follows that

(B, U) =— C1 (6)

Differentiating (6) with respect to s and using (1) and (5), we have
1 (ki)
B0y == (2) e (7

U a constant field, we can write
U= ulT + U,ZN + U3B1 + U4BZ (8)
and for K is a constant
(U,U) = K? = constant. 9)

This suggests that the subspace spanned by {T, By, B, } contains the unit
vector U. Using equation (1), we obtain the components of U as
follows:

u; = (T,U)=¢
u, = (N,U)=0

ky
uz; = (B, U)=-— k_Cl

2

kp\/
up = (BpU)= k3<k2)

Thus, we have

U= clT—k—clBl a (kz) B,. (10)

If we standard scalar product both sides of equation (10) by U, we find
I\ 2

eed-d@EE) o

2

If we divide both sides of equation (11) by cZ, we have IZ—Z -1=
1
I\ 2 2

— (ﬂ)z + i((kl) ) Ifu= IC{—Z — 1 = constant is taken, we obtain

ko K3 1
1 ((k\\° (k)2 k
—2((—1)) - (—1) —u=0. If y=-is taken, we obtain the
k3 \\kz k2 ks
following non-linear equation,

I
— =y’ —pu=0. (12)
k3

The proof is completed.
Theorem 2. Let y is a curve that the vector ¥ be space-like and B, be
time-like in R with Frenet frame {T, N, By, B,}. If the curve y is a 2-

type slant helix and 2-type Darboux slant helix in Rf, then we obtain
the following non-linear equation,

2k K22 8 . K
. k18y+<k3 3 A = wi Il

12
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2

k K
where y = —— and u = = — 1, £ are constants.
K3 +KkZ cZ

Proof. In Rf, let y = y(s) be a 2-type slant helix and a 2-type Darboux
slant helix. If U is a definite direction that is not zero, then

(N,U) = c, (13)

is a constant along the curve y = y(s). Differentiating (13) with respect
to s, we get

(N',U) = 0. (14)
From y = y(s) is a 2-type Darboux slant helix, we can write
(D2, U) = cs. (15)

By setting (1) in (14), we find the following equation:
—k(T,U) + k,(B;,U) =0 (16)

and substituting (15) to (1), we obtain as below:
k,(T,U) + k,(B;,U) = cs. (17)

By setting (16) in (17), we find

(T U kz
, ) k12 + k% s
it follows that

k
(B1,U) = (k%:k%) Cs. (18)
Differentiating (18) with respect to s, we get (B,, U) = — (Z_Z) ¢y +
3
1 ki )
ks (k%+k§) Cs. U a constant field,

we can write

U=uT +u;N +uzB; + uyB, (19)
and for K is a constant (U, U) = K? = constant. This suggests that
the subspace spanned by {T, B;, B, } contains the unit vector U. Using
equation (1), we obtain the components of U as follows:

13
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Ky
w = (TLU)= (k2+k2) Cs
u, = (N,U)=¢,
Kk 20
us = (BpU)=- (k%-l—lkg) Cs ()
_ (ke 1k
us = (B U)= (k3) 2ty (k§+k§) -

By setting (20) in (19), it can be written as U = (kzk e ) csT + ;N —

(klkaz) CsBy+ ( (Z) €2+ k13 (ﬁ), Cs) B,. If we standard scalar

product both sides of the last equation by U and ¢5 = % ¢, where ' =

( k2 )I,We find

kZ+k2

2
| _Lk ) 221

£r2 k3
kser| iy
K2 +1

2
If we divide both sides of equation (21) by ¢2 and u = Iz—z — 1 are taken,

2
we obtain the following non- linear equation,

) u["z CRP: ] 0

Corollary 1. Lety is a curve that the vector N be space-like and 5,

2k
y?2—"Ze'y' + <k3
ky

The proof is completed.

be time-like in R} with non-zero curvatures k;, k, and ks. If the curve
y is a 2-type slant helix and 2-type Darboux slant helix in R, then the
following holds

C2 _ 1 k, '
ek 2+ k2 = constant # 0.

Theorem 3. Let y is a curve that the vector ¥ be space-like and B, be
time-like in ]R‘lL with Frenet frame {T, N, B;, B,}. If the curve y is a 3-

type slant helix and 3-type Darboux slant helix in Rf, then we obtain
the following non-linear equation

2k, k?k2 k2 k?
2 1.7 2 2 2 _ 2 —
y +_k3 Ay +<k1+ k§ y sz —k2/1 0

_ ks _K? ’
where y = pEm; and u = z + 1, A" are constants.

Proof. In Rf, let y = y(s) be a 3-type slant helix and a 3-type Darboux
slant helix. If U is a definite direction that is not zero, then

14
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(B1,U) = c3 (22)

is a constant along the curve y = y(s). Differentiating (22) with respect
to s, we get

(B;,U) = 0. (23)
From y = y(s) is a 3-type Darboux slant helix, we can write

(D3,U) = c. (24)
By setting (1) in (23), we find the following equation:

kz(N,U)+k3(Bz,U) = 0 (25)
and substituting (24) to (2), we obtain as below:
k3<N, U) + kz(Bz, U> = C6' (26)

By setting (25) in (26), we find

—Cek3

(N,U) = =25 (27)
it follows that
k
(B2, U) =2 (28)

Differentiating (27) with respect to s, we get (T,U)= %c3 +
1

1( ks ),c
ki \kZ2-k2) "6

. _ . k
Differentiating (28) with respect to s, we get ¢, = ——c3.U a

constant field, we can write

U=uT+u,N +uzB; +u,B,

and for K is a constant (U, U) = K? = constant. This suggests that
the subspace spanned by {T, B;, B, } contains the unit vector U. Using
equation (1), we obtain the components of U as follows:

U= (:_i cs + kil(ﬁ) c6) T + (I:;jig) N —c3B, + (é%’jj%) B,.(29)

If we standard scalar product both sides of equation (29) by U and ¢ =

ks . .
/1_? c3 is written, we find

15
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2
k ks \\ 1( k3
=+ 5 (5)) @+ (3() -+

ko
k3-k3

where ' = ( ) . If we divide both sides of last equation by c2 and

K? ks ) . . . .
p=_+ 1,y = (k2 3k2) is taken, we obtain non-linear equation.
3 2713

The proof is completed.
Corollary 2. Lety is a curve that the vector N be space-like and B,
be time-like in R with non-zero curvatures k,, k, and k5. If the curve

¥ is a 3-type slant helix and 3-type Darboux slant helix in R, then the
following holds

G _ 1 k, '
. k3 k2 k% = constant # 0.

Theorem 4. Let y is a curve that the vector N be space-like and B, be
time-like in R with Frenet frame {T, N, By, B,}. If the curve y is a 4-
type slant helix and 4-type Darboux slant helix in R, then we obtain

the following non-linear equation,

1
N2 N2 =0

2

k K
where y = k—z and u = pri 1, because cy, K are constants.
2 4

Proof. In Rf, let y = y(s) be a 4-type slant helix and a 4-type Darboux
slant helix. If U is a definite direction that is not zero, then

(B2, U) = ¢, (30)

is a constant along the curve y = y(s). From y = y(s) is a 4-type
Darboux slant helix, we find (D;, U) = c,. Differentiating (30) with
respect to s, we get (B3, U) = 0. U a constant field, we can write
U=uT+u;N +uzB; +uyB, and for K is a constant (U,U) =
K? = constant.

This suggests that the subspace spanned by {T, B;, B, } contains the unit
vector U. Using equation (1), we obtain the components of U as
follows:

kq kz

U=— T__C4N+C4B2 (31)

If we standard scalar product both sides of equation (31) by U, we find

2

=it () + () )

16
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2

If we divide both sides of equation (32) by cZ, we have IC{—Z —-1=
4
N

- (ﬁ)z + ! ((B) ) CIfu = K—ZZ — 1 is taken, we obtain

kz E kz C4_
2
- (&) —u=0. (33)

Ify = % is taken, we obtain the non-linear equation and so the proof is
2

completed.

A numerical example is provided for theorem 4 and its figure are as
follows are demonstrated using found values for k; and p.

3.APPLICATIONS

A numerical example is provided for theorem 1 and its figure are as
follows are demonstrated using found values for k5 and .

Example 1. Let ¥ be a unit speed time-like curve in R, , given by the

equation
y(s)= (%cos(\h_),%sin(@),cosh(s),sinh (s)) . We easily
obtain the curvatures and Y7, as follows:

J5 3

2 25
k(s)=—,k(s)=—=,k(s)=—=, u=—— and so, the solution of
1(9) 2 1()2\/5 1()\/§,U 5

according to the non-linear equation (12) with coefficient u, we get

St(MJ
ky (S)

S

ky(s) i/_1_‘[811[2(s+i)\/§J2

N

17
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Figure 1. Approximate solution curves of Example 1.

Example 2. Let ¥ be a unit speed time-like curve in R} with the
equation ¥(s) = (3cos(v3s),3 sin(v/3s), cosh(s), sinh(s) ). We easily obtain
the curvatures and u as follows:

LE =5 k) =% ke =25 1=-5
according to the non-linear equation (33), yield the following equation:

ka(5) _ Sran (%ﬁ)
k3 (=) ?J—l—tﬂﬂ(%z

and the solution

18
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140000

120000

100000

80000

x4 = sinh(s)

60000

40000

20000

Figure 2. Approximate solution curves of Example 2.

4.CONCLUSIONS
The slant helices in Minkowski 4-space []| exhibit rich geometric

structures that differ from their Euclidean counterparts due to the
indefinite nature of the metric. The distinction between space-like and
time-like components in the Frenet frame leads to unique behaviors and
differential relationships. In particular, the existence of distinct
nonlinear equations characterizing each k -type slant helix reveals that
these curves are governed by intricate geometric constraints. Moreover,
the utilization of the Darboux vector frame adds further geometric
insight into the internal symmetries of these curves. These results may
have applications in relativity theory, where the Minkowski structure
naturally appears, and in modeling trajectories constrained by
Lorentzian geometry.

In this paper, we have investigated the geometry of k -type slant helices

in Minkowski 4-space [1| under the assumption that the binormal
vector B, is time-like. By employing the Frenet and Darboux frames,

we derived several nonlinear differential equations corresponding to

19
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k=1,2,3,4. These equations provide necessary conditions for a curve
to be classified as a k -type slant helix or Darboux slant helix.

We explore the relationship between k -type slant helices and their
corresponding k -type Darboux slant helices, as well as the nonlinear
differential equations of the slant helices that depend on the various
geometric and analytic variables involved. This work lays the
groundwork for future studies that may examine conditions under
which the constants defining the £ -type slant helices and the & -type
Darboux slant helices coincide. Our results not only generalize classical
slant helix concepts into the Lorentzian context but also offer new
insights into the interplay between curvature functions and geometric
invariants in higher-dimensional semi-Riemannian spaces. The
inclusion of numerical examples and visualizations further confirms the
theoretical findings. Future studies may extend this approach to
partially null or pseudo null curves, or explore similar structures in
other signature spaces, or extending these results to higher-dimensional

pseudo-Riemannian manifolds.

20
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1.Introduction

Let us consider the inverse scattering problem for the differential equation

“Y"()+ gy (x) = p(y(x),  0<x<+om, (1

subject to the boundary condition

~(ay (0 -ay' () = 22(By(0) - By'(0)), @)

where A is the spectral parameter.

The potential function g(x) is assumed to be real-valued and to satisfy the integrability
condition

I{:m(l+x)|q(x)|dx<w. 3)

Furthermore, p(x) is a positive piecewise-constant function with a finite number of points of

discontinuity. The constants «, and S, (i=1,2) are real numbers satisfying

y=a,f,—a,p >0.

The aim of this work is to investigate both the direct and inverse scattering problems on
the half-line [0,+0) for the boundary value problem (1)- (3)

2. Related Works

In the case p(x) =1, the inverse scattering problem for equation (1)} with boundary conditions

not containing the spectral parameter was completely solved by Marchenko (Marchenko1955,
Marchenko1986), Levitan (Levitan1975, Levitan1987), Aktosun (Aktosun2004), as well as
Aktosun and Weder (Aktosun-Weder2006).

The version of the problem with discontinuous coefficients was investigated by
Gasymov (Gasymov1977) and Darwish ( Darwish1993). In these works, the solution of the
inverse scattering problem on the half-line [0,+00) by means of transformation operators was

reduced to the solution of two inverse problems on the intervals [0,a] and [a,+x).

In the case p(x)=1, the inverse scattering problem was studied by Guseinov and

Pashaev (Guseinov-Pashaev2002), who employed a new non-triangular representation of the
Jost solution corresponding to equation (1). It was shown that the discontinuity of the function
p(x) strongly influences both the structure of the Jost solution and the main equation of the

inverse problem.
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We note that similar phenomena do not arise for systems of Dirac equations with
discontinuous coefficients, as shown by Mamedov and C6l (Mamedov-Col2008).

The uniqueness of the solution of the inverse problem and its geophysical applications for
equation (1) in the case g(x) =0 were investigated by Tikhonov (Tikhonov1949) and Alimov

(Alimov1976).

The inverse problem for a wave equation with a piecewise constant coefficient was studied by
Lavrent'ev (Lavrentev1992).

When p(x)=1 and the spectral parameter appears in the boundary conditions of equation (1),

the inverse problem on the half-line was considered by Pocheykina and Fedotova
(Pocheykinal972) using the spectral function approach, by Yurko (Yurko2000a, Yurko2000b,
Yurko2002) using the Weyl function, and by Mamedov (Mamedov2003,Mamedov2009) based
on scattering data.

Boundary value problems with spectral parameter-dependent boundary conditions arise in a
wide range of physical and applied problems, including heat conduction problems studied by
Cohen (Cohen1966) and wave equations investigated by Yurko (Yurko2000a, Yurko2000b).

Spectral analysis of Sturm--Liouville problems on the half-line was examined by Fulton
(Fulton1977). Physical applications of problems with linear dependence on the spectral
parameter in the boundary conditions on a finite interval were discussed by Fulton
(Fulton1981).

On a finite interval, inverse spectral problems for Sturm--Liouville operators with linear or
nonlinear dependence on the spectral parameter in the boundary conditions were studied by
Chernozhukova and Freiling (ChernozhukovaFreiling2009), Chugunova (Chugunova2001),
Rundell and Sacks (Rundell-Sacks2004)}, Guliyev (Guliyev2005), and Mamedov and
Cetinkaya (Mamedov-Cetinkaya2014, Mamedov-Cetinkaya2013).

3. Scattering Data and the Inverse Problem

For the boundary value problem (1)- (3) the following results are obtained:

a) the scattering data corresponding to the boundary value problem (1)- (3) are defined;

b) the main equation of the inverse problem is derived;
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¢) the uniqueness of the solution of the main equation is proved;
d) the uniqueness of the solution of the inverse problem is established;

a) a Levinson-type formula is obtained.

For simplicity, we assume that in equation (1) the function p(x) has a single point of

discontinuity, namely

a’, 0<x<a
p(x) = (1.4)
1, x>0

where O<a #1.

The function

1 1 gt 1 1 o
(6 A) == 1+ —— [+ —| 1 -- ) 5
Jo(x,4) 2( p(x)]e 2[ p(x)Je (5)

where

1 (x) =%x p(x) + a(l + \/p(x)),

is the Jost solution of equation (1) for g(x)=0.

It is known from (Guseinov-Pashaev1998) that for all A in the closed upper half-plane,
equation (1) has a unique Jost solution f(x, A1) satisfying

lim f(x, )™ =1, (6)

and admitting the representation
S = [+ [ (e dr, 7

where the kernel K(x,7) satisfies
[ Ko< Cexp( [“ 140 |dt), 0<C = const. ®)

Moreover, the kernel K(x,7) possesses the properties

d 1 1
a (X)) = — 1 9
oK w () po + NE (x)]q(X), ©)
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LUK (e () +0) =K (5 7 () =)} = e 1 Jq(x).

dx 4lp\ {px)

If g(x) is differentiable, then K(x,¢) satisfies almost everywhere

0°K 0’K

o ox’

p(x) +qg(x)K =0, O0<x<+oo, t>u (x).

(10)

(1D

For real 4 #0, the functions f(x,4) and f(x,4) form a fundamental system of solutions of

the equation (1) and their Wronskian satisfies
WS (x,A), f(x, )} = 2i4,

where W{f,g}=fg—- /g

Let w(x, 1) be the solution of equation (1) satisfying

WO, =a, +BA%,  W(0,A)=a, +BA%

Then for all real A4 # 0 the identity

2iAw(x, A)
(o, + B A7) ['(0,4) = (a, + BAT) £(0,4)

=) =S(A)f(x,A)

holds, where

S(A) = (a, + 5,2°) (0, 1) = (e, + BA) f(0,2) .
(a, + 182/12 )/(0,2) = (a, + ,Blﬂz)f(o, A)

Moreover,

S(A)=S(-A)=[SD]T"

The function S(A) is called the scattering function of the boundary value problem (1)-(3).

(12)

(13)

(14)

The function ¢(A) has only finitely many zeros in the half-plane Im A >0, all of which are

simple and lie on the imaginary axis.
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Define

m? = [ p(o] f(xid)] dx+% | B.11(0,i2)~ B, (0,i2,)

1
2i0y

OB 0.i2)-Bf(0.04)].  k=12..n

These quantities are called the normalizing numbers of the boundary value problem (1)-(3).

The collection

{S(A),—o<A<+00; 4, sm,, k=1,2,...,n}

is called the scattering data of the boundary value problem (1)-(3).

The inverse scattering problem consists in recovering the potential g(x) from the scattering
data.

For each fixed x>0, the kernel K(x, y) satisfies the integral equation

F(x,y)+ j;x)K(x,t)E)(z +y)dt + K (x,y) +% %K(x, 2a-y)=0, (15)
where
Fy(x) = % [TIs,m-sle*ar+ gm;e‘m (16)

1

1 1 . 1 _
F(x,y) ZE(HWJE)(JW/I (X))+ELI_W]E)(J/+# (x))- (17)

Equation (15) is called the main equation of the inverse scattering problem. Due to the
discontinuity of p(x), it differs essentially from the classical Marchenko equation and is

therefore referred to as the modified Marchenko equation.

Using the main equation, it is shown that the scattering function S(A) is continuous for all real

A, and the main equation admits a unique solution K(x,-) € L, (u"(x),) for each x>0.
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Consequently, the scattering data uniquely determine the boundary value problem (1)-(3).

4. Levinson-Type Formula

We now present a Levinson-type formula which establishes a relation between the increment
of the argument of the scattering function S(A1) and the number of eigenvalues of the boundary

value problem (1)-(3).

Theorem (Levinson-Type Formula)

The following identity holds:

In S(+0) — In S(-c0) 1-S5(0) _
i FCB) - =

b

where n denotes the number of eigenvalues of the boundary value problem (1)-(3) and the
constant C(f3,) is defined by

2

N | W

C(B)=

J—‘

> »
I
e L

5. An Application

In classical quantum mechanics, the stationary state of a system consisting of two particles with
masses m, and m, and total energy E is described by the wave function ¥, which satisfies

the Schrodinger equation

h2
—AY+V(x)¥Y =EY, 18
Y (x) (18)

where £ is Planck's constant,

M=
m, + m,

is the reduced mass, V'(x) is the interaction potential, and x = |7c| denotes the distance between

the two particles.
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, separation of variables in

Since the potential V' (x) depends only on the distance |7c

The equation (18) yields the separation equation

P(E) =x"u,(E,x)Y"(0,9),

where Y"(0,¢) are the spherical harmonics. The radial function u,(E,x) satisfies the

differential equation

h* 00 +1
_ZM(W’_ (x2 )u(,j+V(x)u(,:Eu(,, (19

together with the boundary condition
u,(E,0)=0.

Introducing the notations

2M 2ME
gx)=="5V(x), A =75, (20)
h h
The equation (19) can be rewritten as the boundary value problem
—u, +q(xX)u, +&jl)u/ =u,, 0<x<oo, (21)
subject to
u,(0)=0. (22)

The solutions of the boundary value problem (20-22) that remain bounded as x — o are

called the radial wave functions.

We assume that the potential satisfies
I: x| g(x) |dx < . (23)

Under this condition, it follows from the results of the previous sections that for /=0 the
problem (20)-(22) admits bounded solutions u,(x) corresponding to A°> >0 and to discrete

eigenvalues 4 =i4, (k=1,...,n). Moreover, as x — o0,
u,(x)=e™ =S +o(l), 0<A’ <, (24)

and

30



International Studies in the Field of Mathematics - December 2025

u,(i2,,x) =me **(1+o(1)), k=1,...,n. (25)

Thus, the scattering data
{S(A), —o< A<y 4, my, k=1,...,n} (26)

provide a complete description of the asymptotic behavior of all radial wave functions u,(x).

A similar description holds for £ #0.

In terms of the scattering data, the potential V' (x) is uniquely recovered. In particular, if K(x, y)
denotes the kernel of the transformation operator, then the potential g(x) is given by

1d
q(x)= _EEK(X’X)'
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1. INTRODUCTION

From antiquity to present, sequences and series have constituted one of
the central notions in mathematics. The idea of convergence of series,
which is a well-established concept, traces its origins back to ancient
times. Before the concept of convergence was precisely defined,
mathematicians often encountered paradoxical results and unsolvable
inconsistencies when attempting to assign sums to infinite series using
arbitrary operations. Some of these contradictions were clarified
through Gauss’s binomial theorem. Later, Cauchy, by formalizing the
concept of convergence for sequences and series, provided a systematic
foundation and offered a new perspective. This development marked
the beginning of the modern understanding of convergence and
divergence. Nevertheless, Cauchy’s formulation naturally gave rise to
a further question: Is it possible to assign a sum to a divergent series?
The affirmative answer to this question came through the extension of
convergence to broader notions, giving rise to the theory of
summability.

To illustrate the idea, let us consider the following example, which
highlights the essence of summability in a simple manner. For | z [< 1,
it is well known that

1
“1-z°
Substituting z = —1 into this identity, Euler obtained

1+z+2%2+-

1
1=1+1-1+= . (1)

In the framework of Cauchy convergence, there is a problem, since the
series

[oe)

PG

k=0

diverges. However, when the sequence of partial sums (b,,) is
transformed by the first-order Cesaro mean, one obtains

- 1
Z 4( +1) [T+ D0

k=0

Here, it is clear that (t,) converges to 1/2, n = oo. Hence, the sum of
the non-convergent series given by (1) is calculated as 1/2 using the
Cesaro summability method. This example shows that divergent series
can be summed, if the method is changed, so it is very important in
terms of summability theory. This classical example demonstrates that
divergent series can indeed be summed under suitable transformations,
hence underlining the significance of summability theory.
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Summability theory continues to hold an important role across various
branches of mathematics and the applied sciences. It is widely utilized
in engineering disciplines, applied analysis, functional analysis, Fourier
analysis, and related areas. In this regard, the literature on summability
theory has evolved in two principal directions: first, through the
construction, study, and characterization of new summability methods
and their associated sequence spaces generated by classical matrices
such as Hausdorff, Holder, Fibonacci, Cesaro, Norlund, and Euler; and
second, through the development of new absolute summability methods
and sequence spaces obtained via absolute summability methods from
different perspectives. More recently, absolute summability methods
have gained increasing importance, leading to the development of novel
sequence spaces that provide fresh insights and broaden the scope of
the field. As a result, summability theory continues to make substantial
contributions to contemporary mathematical research and remains a
dynamic and influential area of study. Further examples and related
discussions can be found in (see (Bor, 1993; Cinar and Et, 2020; Erdem,
2024; Ilkhan, 2020; Sulaiman, 1992; Yaying et al., 2025; Yaying et al,
2021)).

On the other hand, one of the key concepts addressed in this study is the
q-analogue of a mathematical expression, which involves generalizing
the expression by introducing a parameter q. As ¢ — 1, the g- analogue
naturally reduces to its classical method. Although the origins of g-
calculus can be traced back to the work of Euler, it has become a more
vibrant and actively researched field in recent years. g-calculus has
attracted attention due to its wide range of applications in mathematics,
physics, and engineering. It finds extensive use in various branches of
mathematics, including approximation theory, combinatorics, quantum
algebra, special functions, operator theory, hypergeometric functions,
and beyond. The g-Cesdro matrix C? = (c,!)), which is one of the basic
concepts of this study, has recently been defined by Aktuglu and Bekar
(2011) as follows:

4

q
—— 0<v<
¢l = [n+1],

0, v>n

n

where [n], is the g-analogue of a non-negative number n and identified
by
1—q"
[nlg=y1-q’
n, q=1.

qeR* — {1}

To highlight the distinction between g-analogue summability and its
classical counterparts, consider the sequence

x, = (D™
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This sequence is not classically convergent, but becomes summable for

0 < g < 1 under a suitable g-Cesdaro summability method (see
Figure 1 for ¢ = 0.5,s = 1,n = 100). Beyond these theoretical
aspects, applications to Fourier series and g-difference equations reveal
the practical importance of g- Cesaro methods. They provide a refined
tool for capturing subtle forms of convergence, including weak or
statistical types. Furthermore, in engineering contexts such as signal
processing and data compression, it is often desirable to suppress noise
or smooth irregular fluctuations. While traditional Cesaro means apply
uniform averaging, this may not suffice for highly variable data. In
contrast, the g-Cesaro framework includes an adjustable g-parameter
that allows the researcher to balance smoothing and the preservation of
local details, offering greater versatility. In future work, the potential
use of g-Cesdro summability in adaptive signal filtering, noise
reduction and compression algorithms deserves further attention.
Figure 1 already suggests that when g <1, ¢g-Cesaro smoothing
outperforms the classical scheme, especially in the presence of rapid
oscillations.

Summability Methods Applied to x, = (=1)"

1.00 e e P [ESPEOTEREDE SRS VPSP original X, = (~1)"
‘ i ' ‘ ‘ l | \ ‘ l ‘ 1 \ | ’ | } ‘ I . 1 ( } 1 ‘ ' —~— Classical Mean
! 1 | I | l | } ~~ Cesaro Mean
0.75 IR Tt " """" 1 ( | INEEEE T [ = Absolute Cesaro Mean
'; 'y | ‘ ‘ [ | | | | “ f ‘ ‘ || ' = Absolute g-Cesaro Mean (q=0.5)
AN A ol |

n ‘
P 1:;'}“, 1 W.qx»“,“,;w._‘[. 4‘.,.1‘,‘-‘»},‘..Mhm‘,,“;.m‘..w TL"'"’”‘" 44

—

B A

Value

2555 - T‘, i I 1l “ f A“ g

| ““
U

T

‘ 4 1‘ Het

] 40 0 80 100

n

Figure 1

Nevertheless, some limitations should be acknowledged. Calculations
based on g-calculus such as g-differences or g-summability operators
are typically more complicated than classical formulations, and proofs
involving g-Cesaro matrices often require considerable technical
effort. Moreover, the parameter g is not universal; its choice crucially
influences the outcome. Therefore, g must be selected carefully
according to the nature of the application, rather than chosen arbitrarily.

Letb = (b]-) be sequence of partial sum of the series ), u;, and let ¢ =

((pj) be any sequence of positive real numbers, u = (uj) be any
bounded sequence of positive real numbers. Following Gokge &
Sar1g6l, (2018), the series Y, u; is said to be summable |A, ¢ |(w), if

> oA ) = Ay )" <o
j=1

The summability method |A, ¢|(u) is highly general and encompasses
many well-known absolute summability methods as special cases,
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depending on the choice of the matrix A and the sequences ¢ and p.
For example, if one takes the triangle matrix T instead of A with y; =
s for all j, the summability method |T, ¢|g is immediately obtained
(Gokge, 2022). Similarly, choosing the Euler matrix with ; = s for all
Jj, yields the summability methods |E™, | satisfying the condition

S

00 n

z gs-1 z (:71 )(1 vy,

n=1 v=1
(Gokee & Sarigol, 2020), if we decide on the weighted mean matrix
instead of A, the summability method |A, 6,,|(x) is reduced to the

IN, pp, 0,,|(u) satisfying the condition

n—1
29# PPn 1ZP'V 1uV
n=1

(Gokee & Sarigol, (2018)), if we decide on the Cesaro matrix instead
of A with 8,, = n for all n, the method is reduced to |C,a, B|(¢) and
the set of all series summable by this method is given by:

< oo,

HUn

)

o) n Un
Al—l A/l—l
E n—1 E n-v “n-v-1 B
" <A’1+3 B b <
n=1 v=0 n n—1

(Gokee & Sarigol, (2019)). In addition to the last chosing above, if § =
0 and u, = s for all n is selected, the method |C, a|g given by the

condition
(o] n S
S
A v
n AL

n=1 v=0

studied by Sarigdl is obtained, (Sarigdl, 2016).

<

Let A = (4,,) be a sequence and X and Y be two summability methods.
If )} A,u, is summable Y whenever )} u,, is summable the summability
method X, then A is said to be a summability factor of type (X,Y), and
we denote it by Ae(X,Y). The problems of summability factors dealing
with absolute g-Cesaro summability is the main subject of the study.
Before moving on to the main theorems, let us recall the lemmas that
will be used in the proofs:

Lemma 1. (Stieglitz, Tietz, 1977) Let 1 < s < oo. A € (I, 1) ifand

only if
2,

nenN

*

co S

sup Z

j=0

: N c N finite } < oo,

Lemma 2 (Sanigol, 2013) Let A = (4;;) be an infinite matrix with

complex components, ¢ = (9;) be a bounded sequence of positive
numbers. If W, [A] < o or L, [A] < oo, then

(@2m)"2W, [A] < L, [A] < W, [A],

where m = max{1, 2M~1},M = sup; o;.
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Qi

and

Lo [A] = sup z ZAji : G C N finite .

Lemma 3. (Maddox, 1970) A € ([, ;) if and only if

oo
sup Z|’1nj|s < o,
] n=0

where 1 < s < oo,

. MAIN RESULTS

In this part of the section, we introduce the absolute g-Cesaro
summability method which combines the notion of absolute
summability with the transformation matrix generated by the g-Cesaro
matrix. Subsequently, the theorems expressing the necessary and
sufficient conditions for Ae(|CY?, |, |CP, §|) and Ae(|CP, 6],|CY, @|,),
which are the main problem of the study, will be stated and proven. To
obtain this method, let us take the sequence ) u; and its partial sums
b;. Then we get

n n n i n
An(b) = Cgibizzujz [n+ 1], Z n+1])
i=0 j=0 i=j j=0
and so,
n , -1
A (0) = Z (“m) Y (1—n—>
: ]:0
n
Z qln + 1 n>0,
j=
A/lo(b) = Uy.
If

> ot a4, Bl <o,
=0

it is said that the series )’ u; is summable by the method |CY, ¢|,. Also,
considering the transformation sequence (T},), it can be written that the
series ), u; is summable by |C9, ¢| if and only if (T,)€ L;. Here

n

Y q"lUlqg
To= )" ). et "7

=1
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1
Ty = (po/s*u

By making a few calculations, it can be seen that the inverse
transformation of the transformation sequence (T,) is as follows:

n+1 n—1
unzTn[l/—]q—Tn_l[l/—]q,n>0, (2)
®,° q" 0,2 q" !
_1/5*
Uy = @, Ty

Throughout the article, it is noted that ((pj) and (5]-) represent any
sequences of positive numbers, and also s* indicates the conjugate of
sthatis 1/s+ 1/ =1fors>0, 1/.=0for s=1.

It can be easily seen that, in case of g =1 and ¢, =n, the

summability method |C%, ¢|s is reduced the well-known classical
absolute Cesaro method |C, 1|, (Rhoades,1998).

For simplicity, throughout the rest of the article, it will be used that

[]]p[] + 1]q - [/ + 1]p[i]q = qu(i)-

Theorem 1. Assumethat 1 < s < oo. Then, Ae(|CY?, ¢|, |CP, 8]) if
and only if

i _1/s*pj[j+1]q '
ETITES T

7=0
5@ g
1;:1 (48 () + A4 + 11,114) < @
?;
where
(1
e P
j+1
o =\pr  P<!
1
G, 7
Proof.

Assume that T, and t,, are the transformation sequences of |C?, ¢|
and |CP, §| means of series ) u,and Y, A, u, respectively, that is

Z n+1 Z[n n+1

Considering the inverse transformation of T, it is easily obtained that

M:

= n]p n+ 1
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:i il (LUt =1l

nl,[n+1 RV
DR

=i Py U+ le, NPt Upds e o

1 Y 1/ 7
bty ey G Tl T, Yo

+ 2 i g, Wbl + e = Al + 10, 01)

_1/ .
to =@, ° AoTo.

Hence, it can be written that

n
=Zaan,-

—.
o

where
( -y ptn+ 1], o
o e, ™ j=n
_1/ .
Apj = X 0. s*.n
J . . . .
. A:A AA; 1 ,(1<j<n-1
q’[n]p[n+1]p( jBpg (D) + AT + 11,[714) Jjsn

\ 0, j>n

So, it follows from Lemma 1 and Lemma 2 that (t,) € [ whenever
(T,) € lsifand only if the matrix A € (I, 1) or equivalent the condition

%) [e%) _1/
_1/5 p [] +1 Z (,0 s* p
+ AA
Z( q1[1+1 - |q/[n],[n + 1], (309 ()
j=0 n=j+1
A+ 10D <o @)
holds.
. . . oo p"
Here, if we consider the series Y57 ;44 EIRCYET as follows
N
@ n . n n+1/’ P=
z p — n=j+1
~ [n]y[n +1], c 1 1
=j+1
n=j Z (1_pn—1_pn+1),p<1orp>1,

n=j+1

the sum of the series is obtained as follows for each value of p:
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(1 —1
i1 P7
j+1
s _]P 1
]+1 =9 [] + l]p ’ p <
! >1
[ + 11, p==
So, the condition (3) is reduced to
Z —1/5 p'lj + 11,
j
= ¢+ 11,
5@ ’

”1( Dpa (D + AL+ 11,010)| | < o,

Theorem 2. Let1 < s < oo. The necessary and sufficient condition
for 2e(|CP, 8], 1C9, ¢ls) is

. q[j+1],
su ss—— P
Jp{(p] p][]+1]q /
Proof.

Assume that T,, and £,, are the transformation sequences of |CY, ¢|, and
|CP,6] means of series Y A,u, and Y u,, respectively.
Using the inverse transformation of £,,, it is obtained that for all n >

S| e
+ 1 (1A,
z pl[nlgn + 1]q\ i8ap (/)

n=j+1

+A4 [ + 11,01,)]} <. (@)

=
v U+ ., Ul
—¢,° 1 tidjs1—
= [n]q[n + 1], p
1/5 qn[n-l_ ]pl f
moptn+1], "
n—1
1/5 qn
+ o, pr[n]q[n 1], (140 + 11,
]=

]+1[] + 1 []] )fj;
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I VA
To =@, ° Aoto.

n
Tn = Z bn] fj,

So, it can be written that

J=0
where
Y. q"[n+1] :
‘Pn/s TR J=n
p™[n+1],
bui =1 s a (LA, (D + AL +11,01,) 1 <j<n-—1
®n pin]gln + 1], \ 70 j qUlp) 1= =

0, j>n.
It follows from Lemma 3 that the condition (4) is immediately obtained

which completes the proof.
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