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2  . Esra YOLAÇAN

Introduction 

Let ℳ ≠ ∅ be a subset of a Banach space ℑ. Let Ω:ℳ →ℳ be a 
map. A point 𝑧𝑧∗ ∈ ℳ is a fixed point of  Ω iff Ω𝑧𝑧∗ = 𝑧𝑧∗. Let 

𝐹𝐹Ω:= {𝑧𝑧∗ ∈ ℳ:Ω𝑧𝑧∗ = 𝑧𝑧∗}. 
Ω called to be nonexpansive if  

‖Ωx − Ωy‖ ≤ ‖𝑥𝑥 − 𝑦𝑦‖ 

for each 𝑥𝑥, 𝑦𝑦 ∈ ℳ. 
Fixed point theory is a field of mathematics that serves as a highly 
influential tool, with widespread applications across various 
disciplines, including economics (McLennan, 2018), game theory 
(Barron, 2024), computer science (Alghamdi, et al., 2013), physics 
(Tycko, et al., 1985), biology (Marrow, et al., 1996), and engineering 
(Bauschke, et al., 2011). 

Several iterative methods are commonly employed to estimate the 
fixed points of some maps. Prominent instances of such methods 
involve the Picard (Picard, 1890), Mann (Mann, 1953), Ishikawa 
(Ishikawa, 1974), and S- iterations (Agarwal, et al., 2007). A 
significant number of researchers have concentrated on improving 
these methods in the last few years. Lately, a distinct novel fixed 
point iterative technique was proposed by Alam&Rohen (Alam and 
Rohen 2025) and Filali et al. (Filali, et al., 2024) to estimate the fixed 
points of contraction maps in a Banach space. 

Assume that ℳ ≠ ∅  is a set and Ω:ℳ →ℳ be a map. Then 
following are defined as: 
Definition 1. The iteration method of Alam&Rohen is given as: 

𝑥𝑥𝑛𝑛+1 = Ω2𝑟𝑟3𝑛𝑛, 
𝑟𝑟3𝑛𝑛 = Ω(𝑡𝑡3𝑛𝑛Ω𝑟𝑟2𝑛𝑛 + (1 − 𝑡𝑡3𝑛𝑛)𝑟𝑟2𝑛𝑛), 
𝑟𝑟2𝑛𝑛 = Ω(𝑡𝑡2𝑛𝑛Ω𝑟𝑟1𝑛𝑛 + (1 − 𝑡𝑡2𝑛𝑛)𝑟𝑟1𝑛𝑛), 
𝑟𝑟1𝑛𝑛 = Ω(𝑡𝑡1𝑛𝑛Ω𝑥𝑥𝑛𝑛 + (1 − 𝑡𝑡1𝑛𝑛)𝑥𝑥𝑛𝑛), 

(1) 

for sequences {𝑡𝑡1𝑛𝑛}, {𝑡𝑡1𝑛𝑛}, {𝑡𝑡1𝑛𝑛} ⊂ (0,1) (Alam and Rohen 2025). 

Definition 2. The iteration method of Filali et al. is defined as: 
 
 



 . 3Research and Evaluations in the Field of Mathematics - 2025 March

𝑥𝑥𝑛𝑛+1 = Ω((1 − 𝑡𝑡3𝑛𝑛)Ω𝑟𝑟2𝑛𝑛 + 𝑡𝑡3𝑛𝑛Ω𝑟𝑟3𝑛𝑛) 
𝑟𝑟3𝑛𝑛 = Ω((1 − 𝑡𝑡2𝑛𝑛)Ω𝑟𝑟2𝑛𝑛 + 𝑡𝑡2𝑛𝑛Ω𝑟𝑟1𝑛𝑛), 
𝑟𝑟2𝑛𝑛 = Ω2𝑟𝑟1𝑛𝑛, 
𝑟𝑟1𝑛𝑛 = Ω((1 − 𝑡𝑡1𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝑡𝑡1𝑛𝑛Ω𝑥𝑥𝑛𝑛), 

(2) 

for sequences {𝑡𝑡1𝑛𝑛}, {𝑡𝑡1𝑛𝑛}, {𝑡𝑡1𝑛𝑛} ⊂ (0,1) (Filali, et al., 2024). 
Subsequently, we will outline fundamental concepts that will be 
utilized in the second part. 

Definition 3. Let ℑ be a Banach space with dimension ℑ ≥ 2. The 
modulus of ℑ is the map 𝛿𝛿ℑ: (0,2] → [0,1], which is characterized 
by 

𝛿𝛿ℑ(𝜀𝜀) = 𝑖𝑖𝑖𝑖𝑖𝑖 {1 − ‖𝑦𝑦 + 𝑥𝑥
2 ‖ : ‖𝑥𝑥‖ = 1 = ‖𝑦𝑦‖, 𝜀𝜀 = ‖−𝑥𝑥 + 𝑦𝑦‖ } 

(Aksoy and Khamsi 1990). 

Lemma 4. Let {𝜔𝜔𝑛𝑛} and {𝜍𝜍𝑛𝑛} denote two sequences of real numbers 
that are both nonnegative, which fulfill the inequality 

𝜔𝜔𝑛𝑛+1 ≤ 𝜔𝜔𝑛𝑛 + 𝜍𝜍𝑛𝑛 

for every 𝑛𝑛 ≥ 1. If ∑ 𝜍𝜍𝑛𝑛
∞
𝑛𝑛=1 < ∞, then lim

𝑛𝑛→∞
𝜔𝜔𝑛𝑛 exists (Tan and Xu, 

1993). 
Based on the information above, the structure of this paper has been 
outlined as follows: In Sect. 2, we offer some convergence theorems 
for a nonexpansive map in a Banach space. In Sect. 3, The algorithms 
presented by Alam&Rohen and Filali et al. are utilized to handle the 
issues of the signal refinement (or denoising), with a comparative 
approach. 
Fixed Point Results 

Lemma 5. Let ℑ be a real Banach space, ℳ ≠ ∅ be a closed convex 
subset of a Banach space ℑ, Ω: ℳ → ℳ be a nonexpansive map, and 
𝐹𝐹Ω ≠ ∅. Let {𝑡𝑡1𝑛𝑛}, {𝑡𝑡2𝑛𝑛}, {𝑡𝑡3𝑛𝑛} ⊂ (0,1). Let {𝑥𝑥𝑛𝑛} be identified by 
(1). Then lim

𝑛𝑛→∞
‖𝑥𝑥𝑛𝑛 − 𝑧𝑧∗‖ exists for every 𝑧𝑧∗ ∈ 𝐹𝐹Ω. 

Proof. Let 𝑧𝑧∗ ∈ 𝐹𝐹Ω. It follows from (1) and nonexpansiveness of Ω 
that 
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‖𝑥𝑥𝑛𝑛+1 − 𝑧𝑧∗‖ ≤ ‖Ω2𝑟𝑟3𝑛𝑛 − 𝑧𝑧∗‖ 
≤ ‖Ω𝑟𝑟3𝑛𝑛 − 𝑧𝑧∗‖ 
≤ ‖𝑟𝑟3𝑛𝑛 − 𝑧𝑧∗‖ 
= ‖Ω(𝑡𝑡3𝑛𝑛Ω𝑟𝑟2𝑛𝑛 + (1 − 𝑡𝑡3𝑛𝑛)𝑟𝑟2𝑛𝑛) − 𝑧𝑧∗‖ 
≤ ‖𝑡𝑡3𝑛𝑛Ω𝑟𝑟2𝑛𝑛 + (1 − 𝑡𝑡3𝑛𝑛)𝑟𝑟2𝑛𝑛 − 𝑧𝑧∗‖ 
≤ 𝑡𝑡3𝑛𝑛‖Ω𝑟𝑟2𝑛𝑛 − 𝑧𝑧∗‖ + (1 − 𝑡𝑡3𝑛𝑛)‖𝑟𝑟2𝑛𝑛 − 𝑧𝑧∗‖ 
≤ ‖𝑟𝑟2𝑛𝑛 − 𝑧𝑧∗‖ 
= ‖Ω(𝑡𝑡2𝑛𝑛Ω𝑟𝑟1𝑛𝑛 + (1 − 𝑡𝑡2𝑛𝑛)𝑟𝑟1𝑛𝑛) − 𝑧𝑧∗‖ 
≤ ‖(𝑡𝑡2𝑛𝑛Ω𝑟𝑟1𝑛𝑛 + (1 − 𝑡𝑡2𝑛𝑛)𝑟𝑟1𝑛𝑛) − 𝑧𝑧∗‖ 
≤ 𝑡𝑡2𝑛𝑛‖Ω𝑟𝑟1𝑛𝑛 − 𝑧𝑧∗‖ + (1 − 𝑡𝑡2𝑛𝑛)‖𝑟𝑟1𝑛𝑛 − 𝑧𝑧∗‖ 
≤ ‖𝑟𝑟1𝑛𝑛 − 𝑧𝑧∗‖ 
= ‖Ω(𝑡𝑡1𝑛𝑛Ω𝑥𝑥𝑛𝑛 + (1 − 𝑡𝑡1𝑛𝑛)𝑥𝑥𝑛𝑛) − 𝑧𝑧∗‖ 
≤ ‖𝑡𝑡1𝑛𝑛Ω𝑥𝑥𝑛𝑛 + (1 − 𝑡𝑡1𝑛𝑛)𝑥𝑥𝑛𝑛 − 𝑧𝑧∗‖ 
≤ 𝑡𝑡1𝑛𝑛‖Ω𝑥𝑥𝑛𝑛 − 𝑧𝑧∗‖ + (1 − 𝑡𝑡1𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑧𝑧∗‖ 
≤ ‖𝑥𝑥𝑛𝑛 − 𝑧𝑧∗‖. 

(3) 

Owing to Lemma 4, we obtain lim
𝑛𝑛→∞

‖𝑥𝑥𝑛𝑛 − 𝑧𝑧∗‖ exists. Notably, {𝑥𝑥𝑛𝑛} 
is bounded. 

Theorem 6. Let ℑ be a uniformly convex Banach space, ℳ,Ω and 
{𝑥𝑥𝑛𝑛} be held as in Lemma 5. Then {𝑥𝑥𝑛𝑛} converges to a point of  𝐹𝐹Ω 
iff 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) = 0, where 𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) holds the distance of 
𝑥𝑥 to set 𝐹𝐹Ω, hence 𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑦𝑦∈𝐹𝐹Ω𝑑𝑑(𝑥𝑥, 𝑦𝑦). 
Proof. Necessity. Given that (3) holds for each 𝑧𝑧∗ ∈ 𝐹𝐹Ω, we reach 

𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) ≤ 𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝐹𝐹Ω), 
for all  𝑛𝑛 ≥ 𝑛𝑛0, Lemma 5 that lim

𝑛𝑛→∞
𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) exists, thus 

lim
𝑛𝑛→∞

𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) = 0. 

Sufficiency. Next, we prove that {𝑥𝑥𝑛𝑛} ⊂ ℳ is a Cauchy sequence. 
Because lim

𝑛𝑛→∞
𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) = 0, there exists 𝑛𝑛0 in 𝑁𝑁 such that for each 

𝑛𝑛 ≥ 𝑛𝑛0, 𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) <
𝜀𝜀
2 for given 𝜀𝜀 > 0. In particular,  

𝑖𝑖𝑖𝑖𝑖𝑖{‖𝑥𝑥𝑛𝑛0 − 𝑧𝑧∗‖: 𝑧𝑧∗ ∈ 𝐹𝐹Ω} <
𝜀𝜀
2. 

Therefore, there is 𝑧𝑧∗ ∈ 𝐹𝐹Ω such that ‖𝑥𝑥𝑛𝑛0 − 𝑧𝑧∗‖ < 𝜀𝜀
2. Now, for 

𝑚𝑚, 𝑛𝑛 ≥ 𝑛𝑛0, 
‖𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚+𝑛𝑛‖ ≤ ‖𝑥𝑥𝑚𝑚+𝑛𝑛 − 𝑧𝑧∗‖ + ‖𝑥𝑥𝑛𝑛 − 𝑧𝑧∗‖ 

≤ ‖𝑥𝑥𝑛𝑛0 − 𝑧𝑧∗‖ 
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< 𝜀𝜀. 
Hence {𝑥𝑥𝑛𝑛} ⊂ ℳ is a Cauchy sequence. As ℳ is closed in the 
Banach space ℑ, there is a point 𝑧𝑧∗ in ℳ such that lim

𝑛𝑛→∞
𝑥𝑥𝑛𝑛 = 𝑧𝑧∗. 

Now, 

lim
𝑛𝑛→∞

𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) = 0 gives that 𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) = 0. 

Due to closed of F, we attain 𝑧𝑧∗ ∈ 𝐹𝐹Ω. 
Lemma 7. Let ℑ be a real Banach space, ℳ ≠ ∅ be a closed convex 
subset of a Banach space ℑ, Ω:ℳ →ℳ be a nonexpansive map, and 
𝐹𝐹Ω ≠ ∅. Let {𝑡𝑡1𝑛𝑛}, {𝑡𝑡2𝑛𝑛}, {𝑡𝑡3𝑛𝑛} ⊂ (0,1). Let {𝑥𝑥𝑛𝑛} be identified by 
(2). Then lim

𝑛𝑛→∞
‖𝑥𝑥𝑛𝑛 − 𝑧𝑧∗‖ exists for every 𝑧𝑧∗ ∈ 𝐹𝐹Ω. 

Proof. Let 𝑧𝑧∗ ∈ 𝐹𝐹Ω. By (2), we get 
‖𝑟𝑟1𝑛𝑛 − 𝑧𝑧∗‖ = ‖Ω((1 − 𝑡𝑡1𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝑡𝑡1𝑛𝑛Ω𝑥𝑥𝑛𝑛) − 𝑧𝑧∗‖ 

≤ ‖(1 − 𝑡𝑡1𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝑡𝑡1𝑛𝑛Ω𝑥𝑥𝑛𝑛 − 𝑧𝑧∗‖ 
≤ (1 − 𝑡𝑡1𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑧𝑧∗‖ + 𝑡𝑡1𝑛𝑛‖Ω𝑥𝑥𝑛𝑛 − 𝑧𝑧∗‖ 
≤ ‖𝑥𝑥𝑛𝑛 − 𝑧𝑧∗‖ 

(4) 

from (4), we have, 
‖𝑟𝑟2𝑛𝑛 − 𝑧𝑧∗‖ = ‖Ω2𝑟𝑟1𝑛𝑛 − 𝑧𝑧∗‖ 

≤ ‖Ω𝑟𝑟1𝑛𝑛 − 𝑧𝑧∗‖ 
≤ ‖𝑟𝑟1𝑛𝑛 − 𝑧𝑧∗‖. 

(5) 

and by (4) and (5), we attain, 

‖𝑟𝑟3𝑛𝑛 − 𝑧𝑧∗‖ = ‖Ω((1 − 𝑡𝑡2𝑛𝑛)Ω𝑟𝑟2𝑛𝑛 + 𝑡𝑡2𝑛𝑛Ω𝑟𝑟1𝑛𝑛) − 𝑧𝑧∗‖ 
≤ ‖(1 − 𝑡𝑡2𝑛𝑛)Ω𝑟𝑟2𝑛𝑛 + 𝑡𝑡2𝑛𝑛Ω𝑟𝑟1𝑛𝑛 − 𝑧𝑧∗‖ 
≤ (1 − 𝑡𝑡2𝑛𝑛)‖Ω𝑟𝑟2𝑛𝑛 − 𝑧𝑧∗‖ + 𝑡𝑡2𝑛𝑛‖Ω𝑟𝑟1𝑛𝑛 − 𝑧𝑧∗‖ 
≤ (1 − 𝑡𝑡2𝑛𝑛)‖𝑟𝑟2𝑛𝑛 − 𝑧𝑧∗‖ + 𝑡𝑡2𝑛𝑛‖𝑟𝑟1𝑛𝑛 − 𝑧𝑧∗‖ 
≤ ‖𝑟𝑟1𝑛𝑛 − 𝑧𝑧∗‖. 

(6) 

In the end, by virtue of (5) and (6), we point out that 

‖𝑥𝑥𝑛𝑛+1 − 𝑧𝑧∗‖ = ‖Ω((1 − 𝑡𝑡3𝑛𝑛)Ω𝑟𝑟2𝑛𝑛 + 𝑡𝑡3𝑛𝑛Ω𝑟𝑟3𝑛𝑛) − 𝑧𝑧∗‖ 
≤ ‖(1 − 𝑡𝑡3𝑛𝑛)Ω𝑟𝑟2𝑛𝑛 + 𝑡𝑡3𝑛𝑛Ω𝑟𝑟3𝑛𝑛 − 𝑧𝑧∗‖ 
≤ (1 − 𝑡𝑡3𝑛𝑛)‖Ω𝑟𝑟2𝑛𝑛 − 𝑧𝑧∗‖ + 𝑡𝑡3𝑛𝑛‖Ω𝑟𝑟3𝑛𝑛 − 𝑧𝑧∗‖ 
≤ (1 − 𝑡𝑡3𝑛𝑛)‖𝑟𝑟2𝑛𝑛 − 𝑧𝑧∗‖ + 𝑡𝑡3𝑛𝑛‖𝑟𝑟3𝑛𝑛 − 𝑧𝑧∗‖ 
≤ ‖𝑟𝑟1𝑛𝑛 − 𝑧𝑧∗‖. 

(7) 

which exhibit that {‖𝑥𝑥𝑛𝑛+1 − 𝑧𝑧∗‖} is decreasing and bounded. 
Therefore, lim

𝑛𝑛→∞
‖𝑥𝑥𝑛𝑛 − 𝑧𝑧∗‖ exists. 
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Theorem 8. Let ℑ be a uniformly convex Banach space, ℳ,Ω and 
{𝑥𝑥𝑛𝑛} be held as in Lemma 7. Then {𝑥𝑥𝑛𝑛} converges to a point of  𝐹𝐹Ω 
iff 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) = 0, where 𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) holds the distance of 
𝑥𝑥 to set 𝐹𝐹Ω, hence 𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑦𝑦∈𝐹𝐹Ω𝑑𝑑(𝑥𝑥, 𝑦𝑦). 
Proof. Necessity. Since (7) holds for each 𝑧𝑧∗ ∈ 𝐹𝐹Ω, we reach 

𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) ≤ 𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝐹𝐹Ω), 
for all  𝑛𝑛 ≥ 𝑛𝑛0, Lemma 5 that lim

𝑛𝑛→∞
𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) exists, thus 

lim
𝑛𝑛→∞

𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) = 0. 

Sufficiency. We now show that {𝑥𝑥𝑛𝑛} ⊂ ℳ is a Cauchy sequence. As 
lim
𝑛𝑛→∞

𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) = 0, there exists 𝑛𝑛0 in 𝑁𝑁 such that for each 𝑛𝑛 ≥ 𝑛𝑛0, 
𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) <

𝜀𝜀
2 for given 𝜀𝜀 > 0. In particular,  

𝑖𝑖𝑖𝑖𝑖𝑖{‖𝑥𝑥𝑛𝑛0 − 𝑧𝑧∗‖: 𝑧𝑧∗ ∈ 𝐹𝐹Ω} <
𝜀𝜀
2. 

Therefore, there is 𝑧𝑧∗ ∈ 𝐹𝐹Ω such that ‖𝑥𝑥𝑛𝑛0 − 𝑧𝑧∗‖ < 𝜀𝜀
2. Now, for 

𝑚𝑚, 𝑛𝑛 ≥ 𝑛𝑛0, 
‖𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚+𝑛𝑛‖ ≤ ‖𝑥𝑥𝑚𝑚+𝑛𝑛 − 𝑧𝑧∗‖ + ‖𝑥𝑥𝑛𝑛 − 𝑧𝑧∗‖ 

≤ ‖𝑥𝑥𝑛𝑛0 − 𝑧𝑧∗‖ 
< 𝜀𝜀. 

Thus {𝑥𝑥𝑛𝑛} ⊂ ℳ is a Cauchy sequence. As ℳ is closed in the Banach 
space ℑ, there is a point 𝑧𝑧∗ in ℳ such that lim

𝑛𝑛→∞
𝑥𝑥𝑛𝑛 = 𝑧𝑧∗. Now, 

lim
𝑛𝑛→∞

𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) = 0 gives that 𝑑𝑑(𝑥𝑥𝑛𝑛, 𝐹𝐹Ω) = 0. 

Due to closed of F, we attain 𝑧𝑧∗ ∈ 𝐹𝐹Ω. 
Example 9. Let ℑ = 𝑅𝑅 and ℳ = [−1,1]. Define a map Ω:ℳ →ℳ 
by Ωx = cos 𝑥𝑥 for 𝑥𝑥 ∈ ℳ. It is clear to prove that Ω is a 
nonexpansive map, 𝐹𝐹Ω = {0.739085}. Let  𝑡𝑡1𝑛𝑛 = 𝑡𝑡2𝑛𝑛 = 𝑡𝑡3𝑛𝑛 =

23
48  

and 𝑥𝑥1 =
𝜋𝜋
5. Numerical computations were done with Matlab R2016. 

By Figure 1 and Table 1, it is evident that (1) converge to 
0.739085 ∈ 𝐹𝐹Ω and (2) converge to 0.8229 ∉ 𝐹𝐹Ω.  This indicates 
that the Theorem 6 is applicable, while Theorem 8 is not.  
Table 1: A numerical analysis comparing the iteration methods of 
Filali et al. and Alam & Rohen for the Example 
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n (1) iteration (2) iteration 
1 0,6283 0,6283 

2 0.7392 0.8343 

3 0.7391 0.8221 

4 0.7391 0.8230 

5 0.7391 0.8229 

6 0.7391 0.8229 

7 0.7391 0.8229 

8 0.7391 0.8229 
9 0.7391 0.8229 

10 0.7391 0.8229 

⋮ ⋮ ⋮ 
1000 0.7391 0.8229 

⋮ ⋮ ⋮ 
2000 0.7391 0.8229 

⋮ ⋮ ⋮ 
3000 0.7391 0.8229 

⋮ ⋮ ⋮ 
4000 0.7391 0.8229 

⋮ ⋮ ⋮ 
5000 0.7391 0.8229 

⋮ ⋮ ⋮ 
10000 0.7391 0.8229 

⋮ ⋮ ⋮ 
 
Figure 1: A numerical analysis comparing the iteration methods of 
Filali et al. and Alam & Rohen for the Example 9 
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The signal enhancement 
Signal enhancement, which aims to improve the quality of a signal 
by minimizing interference, increasing clarity, or emphasizing 
specific details, is commonly applied when the signal is 
compromised by noise, degradation, or weakness, and it is often 
achieved through iterative algorithms that refine a solution through 
a series of repetitive steps. 
Motivated this facts, we created a code using the (1) and (2) iterative 
technique to obtain a cleaner (smoothed) version of a noisy signal. 
Here, the aim is to improve the signal by using a low pass filter 
(moving average) in each step in every two iterations. 

𝑡𝑡1𝑛𝑛 = 𝑡𝑡2𝑛𝑛 = 𝑡𝑡3𝑛𝑛 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.5 in (1) and (2). 

Algorithm (Filali et al.) 
Input: Time vector (t), original signal (original_signal), noise 
(noise), noisy signal (noisy_signal), and filtering parameters (alpha, 
num_iterations). 
Output: Original signal, noisy signal, and the improved signal after 
filtering (x_k). These outputs are visualized in plots. 
1 for k = 1:num_iterations 

2 𝑥𝑥𝑛𝑛+1 = Ω((1 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)Ω𝑟𝑟2𝑛𝑛 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Ω𝑟𝑟3𝑛𝑛) 
3 𝑟𝑟3𝑛𝑛 = Ω((1 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)Ω𝑟𝑟2𝑛𝑛 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Ω𝑟𝑟1𝑛𝑛) 
4 𝑟𝑟2𝑛𝑛 = Ω2𝑟𝑟1𝑛𝑛 
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5 𝑟𝑟1𝑛𝑛 = Ω((1 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)𝑥𝑥𝑛𝑛 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Ω𝑥𝑥𝑛𝑛) 
6 end. 
Algorithm (Alam & Rohen) 
Input: Time vector (t), original signal (original_signal), noise 
(noise), noisy signal (noisy_signal), and filtering parameters (alpha, 
num_iterations). 
Output: Original signal, noisy signal, and the improved signal after 
filtering (x_k). These outputs are visualized in plots. 
1 for 

2 𝑥𝑥𝑛𝑛+1 = Ω2𝑟𝑟3𝑛𝑛 

3 𝑟𝑟3𝑛𝑛 = Ω(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Ω𝑟𝑟2𝑛𝑛 + (1 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)𝑟𝑟2𝑛𝑛) 
4 𝑟𝑟2𝑛𝑛 = Ω(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Ω𝑟𝑟1𝑛𝑛 + (1 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)𝑟𝑟1𝑛𝑛) 
5 𝑟𝑟1𝑛𝑛 = Ω(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Ω𝑥𝑥𝑛𝑛 + (1 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)𝑥𝑥𝑛𝑛) 
6 end. 
These specific implementations are modified versions of the Filali et 
al. and Alam & Rohen iteration method, utilizing a moving average 
filter and multiple iterations to minimize noise (see, Fig 2 and Fig 
3). 
Figure 2: Visualize results for Alam & Rohen iteration 
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Figure 3: Visualize results for Filali et al. iteration 

 
When Figure 2 and Figure 3 are examined, it is seen that the 
amplitude of the Alam & Rohen iteration takes values greater than 0 
over time, while the amplitude of the Filali et al. iteration takes 
values less than 0 over time. 
In signal processing, the amplitude being less than zero and greater 
than zero over time refers to the state of the amplitude being positive 
and negative. These two states are related to different parts of the 
signal.  
Amplitude less than 0, i.e. Negative Amplitude, means that the signal 
is changing in a negative direction. In this case, the phase, 
transformation or polarity of the signal is reversed. Amplitude less 
than zero indicates that the signal is biased downwards. This means 
that the lower half of the waveform is negative, especially in analog 
signals. 
If the amplitude is greater than 0, that is, positive amplitude, it means 
that the signal changes in the positive direction. In this case, the 
phase or polarity of the signal is upward. If the amplitude is greater 
than zero, it indicates that the signal tends upward. In other words, it 
indicates that the upper half of the signal is positive. 
Consequently, changes in these amplitudes over time may indicate 
modulation of the signal or the influence of different frequency 
components. Such changes can be especially important in audio, 
video and communication systems. 
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Conclusion 
In this paper, based on the aforementioned concepts, convergence 
theorems have been examined for two new iteration methods 
introduced by Filali et al. and Alam & Rohen. Additionally, the 
signal enhancement challenges are analyzed for these iteration 
approaches. 
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ASSOCIATED CURVES OF SPECIAL SMARANDACHE 
CURVES IN THE CONTEXT OF THE TYPE-2 BISHOP 

FRAME 

Esra DAMAR1 

1. INTRODUCTION 

One of the fundamental areas of differential geometry involves 
characterizing curves in various spaces, such as Euclidean and 
Minkowski spaces, using different frame systems, including the Frenet 
and Bishop frames. While the Frenet-Serret frame is widely used in 
curve analysis, it becomes undefined at points where the second 
derivative of the curve is zero. This limitation has led to the 
development of alternative orthonormal frames, such as the Bishop 
frame, which provides a more flexible approach, particularly when 
torsion is zero or minimal [1]. Helices, commonly appearing in 
various applications, are typically classified as general helices, 
cylindrical helices, or slant helices. A key property of helices is that 
their tangent vector field forms a constant angle with a fixed direction 
[2]. Lancret’s theorem states that the ratio of torsion to curvature is 
constant for helices, a concept that has been extended to general 
helices through studies involving Killing vector fields [3-5]. Slant 
helices, characterized by a constant angle between the principal 
normal vector and a fixed direction, have also been studied 
extensively in different frames [6]. 

Another significant class of curves in differential geometry is 
integral curves, which arise as solutions to differential equations and 
are often used to define new parameterized curves. Special curves 
such as Bertrand, Mannheim, and Smarandache curves have been 
explored in various frames due to their applications in physics, 
engineering, and computer graphics [7-8].  

 
1  Asst. Prof. Dr., Hitit University, Vocational School of Technical Sciences, Department of 

Motor Vehicles and Transportation Technologies, Email: esradamar@hitit.edu.tr, ORCID: 
0000- 0002- 0743-8545. 
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Smarandache curves, in particular, provide a deeper geometric 
interpretation by transitioning between different frames. Their 
applications span general relativity, robotics, and structural analysis, 
making them an essential tool in both theoretical and applied research 
[9-15]. In this paper, new adjoint curves are introduced by combining 
special Smarandache curves with integral curves in the type-2 Bishop 
frame. These adjoint curves are systematically defined, and their 
geometric properties are examined. Relationships between the original 
curve and its adjoint curves are established, leading to necessary and 
sufficient conditions for a curve to be a general or slant helix.  

2. PRELİMİNARİES  

This section introduces essential concepts required for the 
following sections. Let α = α(s) be differentiable unit speed curves in 
𝐸𝐸3 and its Frenet apparatus be {𝐓𝐓, 𝐍𝐍, 𝐁𝐁, κ, τ}. When 𝛼𝛼 is a unit speed 
curve, its unit tangent vector is 𝐓𝐓(𝑠𝑠) = 𝛼𝛼′(𝑠𝑠) and its curvature is  κ =
‖α′′(s)‖. α′′(s) = κ(s)𝐍𝐍(s) and 𝐁𝐁(s) = 𝐓𝐓(s) × 𝐍𝐍(s) gives the 
principal normal vector and the unit binormal vector of α respectively. 
Next, the well-known Frenet formula is shown as 

 (
𝐓𝐓′

𝐍𝐍′

𝐁𝐁′
) = (

0 𝜅𝜅 0
−𝜅𝜅 0 𝜏𝜏
0 −𝜏𝜏 0

)(
𝐓𝐓
𝐍𝐍
𝐁𝐁
)                                 (1) 

where 𝜏𝜏(𝑠𝑠) = 〈𝐍𝐍′(s), 𝐁𝐁(s)〉 is the torsion of α.  The derivative formula 
of the type-2 Bishop frame is given as follows:  

(
𝐌𝐌𝟏𝟏

′

𝐌𝐌𝟐𝟐
′

𝐁𝐁′
) = (

0 0 −𝜖𝜖1
0 0 −𝜖𝜖2
𝜖𝜖1 𝜖𝜖2 0

)(
𝐌𝐌𝟏𝟏
𝐌𝐌𝟐𝟐
𝐁𝐁
)                          (2) 

The set {𝐌𝐌𝟏𝟏,𝐌𝐌𝟐𝟐, 𝐁𝐁, } is referred to as type-2 Bishop trihedron in this 
case, the curvatures 𝜖𝜖1 and 𝜖𝜖2 are called Bishop curvatures. The 
relation matrix can be expressed 

𝐓𝐓 = sinϴ(s)𝐌𝐌𝟏𝟏 − cos𝜃𝜃(𝑠𝑠)𝐌𝐌𝟐𝟐 

                                𝐍𝐍 = cosθ(s)𝐌𝐌𝟏𝟏 + sinϴ(s)𝐌𝐌𝟐𝟐                           (3)                    

                                𝐁𝐁 = 𝐁𝐁 
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where θ(s) = arctan (ϵ2
ϵ1

), and  τ = √ϵ1
2 + ϵ2

2  , θ = ∫ κ(s)dss
0  [16]. 

Here, type-2 Bishop curvatures are defined by 

 ϵ1(s) = −τcosϴ(s),    ϵ2(s) = −τsinϴ(s).                  (4) 

On the other hand, if Eq (3) are regularized, the following equations 
are obtained 

𝐌𝐌𝟏𝟏 = sinθ(s)𝐓𝐓 + cosϴ(s)𝐍𝐍, 
𝐌𝐌𝟐𝟐 = −cosθ(s)𝐓𝐓 + sinϴ(s)𝐍𝐍,                         (5) 

                                  𝐁𝐁 = 𝐁𝐁. 
When the angle between a curve’s tangent lines and a fixed direction 
remains constant, the curve is called to general helix. The general 
helix’s axis is the name given to this fixed direction. In 1802, Lancret 
articulated the definition of a helix, stating that a curve may be 
classified only as a general helix if the harmonic curvature or the ratio 
𝜏𝜏
𝜅𝜅 remains constant, with κ ≠ 0, if both κ ≠ 0 , and  τ ≠ 0 are 
constants, the general helix is referred to as a circular helix [3]. 

The constant geodesic curvature function of the principal image of the 
constant normal indicatrix characterizes a slant helix, as stated in [6]. 
This function that is constant is provided by 

σ(s) = ( κ2

(κ2 + τ2)
3
2

(τ
κ)

′
(s)). 

Theorem 2.1.1 ([17]).  Let the unit speed curve 𝛼𝛼: 𝐼𝐼 → 𝐸𝐸3 be a slant 
helix with non-zero natural type-2 Bishop curvatures. Then α is slant 
helix if and only if  𝜖𝜖2

𝜖𝜖1
 is constant.  

Definition 2.1.2 ([18]). Let α be an s-arc length parameterized regular 
curve with nonvanishing torsion and {𝐓𝐓𝛂𝛂, 𝐍𝐍𝛂𝛂, 𝐁𝐁𝛂𝛂} is the Frenet frame 
of α the adjoint curve of α is defined as 

β(𝑠𝑠) = ∫ 𝐁𝐁𝜶𝜶
𝑠𝑠

𝑠𝑠0
(𝑢𝑢)𝑑𝑑𝑑𝑑. 
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Definition 2.1.3 ([15]). Let α be an s-arc length parameterized regular 
curve with nonvanishing torsion and {𝐓𝐓𝛂𝛂, 𝐍𝐍𝛂𝛂, 𝐁𝐁𝛂𝛂} is the Frenet frame 
of α. Smarandache TN, NB, and TNB curves are defined by 

β = 1
√2 (𝐓𝐓𝛂𝛂 + 𝐍𝐍𝛂𝛂 ), 

γ = 1
√2 (𝐍𝐍𝛂𝛂 + 𝐁𝐁𝛂𝛂), 

                                         μ = 1
√3 (𝐓𝐓𝛂𝛂 +  𝐍𝐍𝛂𝛂 + 𝐁𝐁𝛂𝛂) 

respectively. 

3. MAIN RESULTS 

3.1. Type-2 Bishop Adjoint Curves  

Definition 3.1.1. Let α be an s-arc length parameterized regular curve 
with type-2 Bishop apparatus {𝐌𝐌1

α, 𝐌𝐌2
α, 𝐁𝐁α, 𝜖𝜖1

𝛼𝛼, 𝜖𝜖2
𝛼𝛼}. The following 

curves, derived from the type-2 Bishop frame of α, are defined as its 
type-2 Bishop adjoint curves: 

The 𝐌𝐌1
α𝐁𝐁α-type-2 Bishop adjoint curve: 

β(s̃) = 1
√2 ∫(𝐌𝐌1

α(s) + 𝐁𝐁α(s))ds                                                (6) 

The  𝐌𝐌2
α𝐁𝐁α- type-2 Bishop adjoint curve: 

γ(s̃) = 1
√2 ∫(𝐌𝐌2

α(s) + 𝐁𝐁α(s))ds                                               (7) 

The  𝐌𝐌1
α𝐌𝐌2

α -type-2 Bishop adjoint curve: 

Ω(s̃) = 1
√2 ∫(𝐌𝐌1

α(s) + 𝐌𝐌2
α(s))ds.                                              (8) 

Each of these adjoint curves is obtained through specific linear 
combinations of the frame vectors, capturing different geometric 
relationships within the type-2 Bishop frame. 

Remark 3.1.2. ([1]). Let α be a regular curve parameterized by arc 
length s, and let β, γ, Ω be its adjoint curves. The arc length parameter 
of 𝑠̃𝑠 these adjoint curves can be chosen such that 𝑠𝑠 = 𝑠̃𝑠. 
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3.2.𝐌𝐌1
α𝐁𝐁α -type-2 Bishop adjoint curve 

Theorem 3.2.1. Let α be an s-arc length parameterized regular curve 
in 𝐸𝐸3 with Bishop apparatus {𝐌𝐌1

α, 𝐌𝐌2
α, 𝐁𝐁α, 𝜖𝜖1

𝛼𝛼, 𝜖𝜖2
𝛼𝛼}. The Frenet vector 

fields, curvature and torsion of β are given by 

𝐓𝐓β = 1
√2 (𝐌𝐌𝟏𝟏

𝛂𝛂 + 𝐁𝐁𝛂𝛂),                                                              (9) 

𝐍𝐍β = 1
√1+2g2 (g𝐌𝐌𝟏𝟏

𝛂𝛂 + 𝐌𝐌𝟐𝟐
𝛂𝛂 − 𝐠𝐠𝐁𝐁𝛂𝛂),                                     (10) 

𝐁𝐁β = 1
√1+4g2 (−𝐌𝐌𝟏𝟏

𝛂𝛂 + 2g𝐌𝐌𝟐𝟐
𝛂𝛂 + 𝐁𝐁𝛂𝛂),                                  (11) 

 κβ = 1
√2 ϵ2

α√1 + 2g2                                                         (12)       

τβ = − 1
√2 ϵ2

α − √2g′

1+2g2,                                                        (13)                           

where g = ϵ1
α

ϵ2
α.   

Proof 3.2.2 Differentiating Eq (7) and applying the Frenet formulas, 
we obtain 

𝑑𝑑β
𝑑𝑑𝑠̃𝑠

𝑑𝑑𝑠̃𝑠
𝑑𝑑𝑑𝑑 = 1

√2
(𝐌𝐌𝟏𝟏

𝜶𝜶 + 𝐁𝐁𝜶𝜶), 

𝐓𝐓β
𝑑𝑑𝑠̃𝑠
𝑑𝑑𝑑𝑑 = 1

√2
(𝐌𝐌𝟏𝟏

𝜶𝜶 + 𝐁𝐁𝜶𝜶), 

taking the norm on both sides gives: 
𝑑𝑑𝑠̃𝑠
𝑑𝑑𝑑𝑑 = 1, 

thus, we conclude: 

𝐓𝐓β = 1
√2 (𝐌𝐌𝟏𝟏

𝛂𝛂 + 𝐁𝐁𝛂𝛂).                                         (14) 

differentiating (14) with respect to s and using Eq (2) we find 

𝐓𝐓β
′ = 1

√2
(ϵ1

α𝐌𝐌𝟏𝟏
𝛂𝛂 + ϵ2

α𝐌𝐌𝟐𝟐
𝛂𝛂 − ϵ1

α𝐁𝐁𝛂𝛂). 
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From this, the curvature κβ and principal normal vector 𝐍𝐍β of curve β 
are given by: 

κβ = ‖𝐓𝐓β′‖= 1
√2
√2ϵ1α

2 + ϵ2α
2, 

𝐍𝐍β =
1

√4ϵ1α
2 + 2ϵ2α

2
(ϵ1α𝐌𝐌𝟏𝟏

𝛂𝛂 + 𝛜𝛜𝟐𝟐𝛂𝛂𝐌𝐌𝟐𝟐
𝛂𝛂 − 𝛜𝛜𝟏𝟏𝛂𝛂𝐁𝐁𝛂𝛂). 

Next, the binormal vector is determined as: 

𝐁𝐁β = 𝐓𝐓β × 𝐍𝐍β. 

Substituting their values: 

𝐁𝐁β =
1

√4ϵ1α
2 + ϵ2α

2
(−ϵ2α𝐌𝐌𝟏𝟏

𝛂𝛂 + 2ϵ1α𝐌𝐌𝟐𝟐
𝛂𝛂 − ϵ2α𝐁𝐁𝛂𝛂). 

To find the torsion τβ, we differentiate 𝐍𝐍β and use: 

τβ = 〈𝐍𝐍β
′ , 𝐁𝐁β〉. 

After simplification, we obtain: 

τβ = − 1
√2

ϵ2α − √2
(ϵ1

α

ϵ2α
)
′

1 + 2 (ϵ1
α

ϵ2α
)
2 

Setting: 

g = ϵ1α
ϵ2α

 

we arrive at the final result.  

Theorem 3.2.3. Let α be an s-arc length parameterized regular curve 
in E3,equipped with the type-2 Bishop apparatus {M1

α,M2
α, Bα, 𝜖𝜖1𝛼𝛼, 𝜖𝜖2𝛼𝛼}. 

Let β be the 𝐌𝐌1
α𝐁𝐁α-type-2 Bishop adjoint curve of α. The type-2 

Bishop vector fields and curvatures associated with β are given by: 
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N1
β = ( 1

√2
 sinθβ  + g

√1 + 2g2
 cosθβ) 𝐌𝐌1

α +
cosθβ

√1 + 2g2
𝐌𝐌2

α 

         + ( 1
√2  sinθβ − g

√1+2g2  cosθβ) 𝐁𝐁α 

N2
β = (− 1

√2
 cosθβ  + g

√1 + 2g2
 sinθβ) 𝐌𝐌1

α +
sinθβ

√1 + 2g2
𝐌𝐌2

α 

         + ( 1
√2  sinθβ − g

√1+2g2  cosθβ) 𝐁𝐁α 

ϵ1
β = ( 1

√2
ϵ2

α + √2 g′

1 + 2g2) cosθβ 

ϵ2
β = ( 1

√2 ϵ2
α + √2 g′

1+2g2) sinθβ. 

Proof 3.2.3. By substituting Eqs. (9) and (10) into Eqs (4) and (5), the 
proof follows directly. 

Corollary 3.2.4. If the unit speed curve 𝛼𝛼: 𝐼𝐼 → 𝐸𝐸3 be a slant helix 
with respect to the Bishop frame, then its 𝐌𝐌1

α𝐁𝐁α-type-2 Bishop adjoint 
curve is a general helix.  

Proof 3.2.4. By computing the the ratio of the torsion and curvature of 
the 𝐌𝐌1

α𝐁𝐁α -Bishop adjoint curve of α , as given in Theorem 3.2.1., we 
obtain: 

τβ
κβ

=

− 1
√2 ϵ2

α − √2
(ϵ1

α

ϵ2
α)

′

1 + 2 (ϵ1
α

ϵ2
α)

2

1
√2

√2ϵ1
α2 + ϵ2

α2
. 

Since α is assumed to be  a slant helix, we have g′ = 0, where g = ϵ1
α

ϵ2
α. 

Substituting this condition simplifies the expression to 

τβ
κβ

= − 1
√1 + 2g2

. 
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Since this expression is constant, it follows that the 𝐌𝐌1
α𝐁𝐁α-type-2 

Bishop adjoint curve of α is a general helix. 

Corollary 3.2.5. Let the unit speed curve 𝛼𝛼: 𝐼𝐼 → 𝐸𝐸3 be a slant helix 
with the Bishop frame. If we rotate the Frenet frame around the  𝐁𝐁α 
axis, the angle of rotation is 

θβ = 1
√2 ∫ √2ϵ1

α2 + ϵ2
α2dss

0 . 

Proof 3.2.5. According to type-2 Bishop formulas, the angle function 
θβ is given by: 

 θβ = ∫ κ(s)ds
s

0
. 

Substituting the expression for 𝜅𝜅𝛽𝛽, we obtain: 

θβ = 1
√2 ∫ √2ϵ1

α2 + ϵ2
α2s

0 ds. 

3.3. 𝐌𝐌2
α𝐁𝐁α-type-2 Bishop adjoint curve 

Theorem 3.3.1. Let α be an s-arc length parameterized regular curve 
in 𝐸𝐸3 with Bishop apparatus {𝐌𝐌1

α, 𝐌𝐌2
α, 𝐁𝐁α, 𝜖𝜖1

𝛼𝛼, 𝜖𝜖2
𝛼𝛼}. The Frenet vector 

fields, curvature and torsion of γ are given by 

𝐓𝐓γ = 1
√2 (𝐌𝐌𝟐𝟐

𝛂𝛂 + 𝐁𝐁𝛂𝛂),                                                              (15) 

𝐍𝐍γ = 1
√1+2g2 (𝐌𝐌𝟏𝟏

𝛂𝛂 + g𝐌𝐌𝟐𝟐
𝛂𝛂 − 𝐠𝐠𝐁𝐁𝛂𝛂),                                      (16) 

𝐁𝐁γ = 1
√2+4g2 (−2g𝐌𝐌𝟏𝟏

𝛂𝛂 + 𝐌𝐌𝟐𝟐
𝛂𝛂 − 𝐁𝐁𝛂𝛂),                                   (17) 

 κγ = 1
√2 ϵ2

α√1 + 2g2                                                           (18) 

τγ = − 1
2√2 ϵ1

α − g′

2+g2,                                                         (19) 

where g = ϵ1
α

ϵ2
α.   

Proof 3.3.1. Differentiating Eq (7) and applying the Frenet formulas, 
we obtain 



24  . Esra DAMAR

dγ
ds̃

ds̃
ds =

1
√2

(𝐌𝐌𝟐𝟐
𝛂𝛂 + 𝐁𝐁𝛂𝛂), 

𝐓𝐓γ
ds̃
ds =

1
√2

(𝐌𝐌𝟐𝟐
𝛂𝛂 + 𝐁𝐁𝛂𝛂), 

taking the norm on both sides gives: 
ds̃
ds = 1, 

Thus, we conclude: 

𝐓𝐓γ =
1
√2

(𝐌𝐌𝟐𝟐
𝛂𝛂 + 𝐁𝐁𝛂𝛂) 

differentiating (15) with respect to s and using Eq (2) we find 

𝐓𝐓γ′ =
1
√2

(ϵ1α𝐌𝐌𝟏𝟏
𝛂𝛂 + ϵ2α𝐌𝐌𝟐𝟐

𝛂𝛂 − ϵ2α𝐁𝐁𝛂𝛂). 

From this, the curvature 𝜅𝜅𝛾𝛾 and principal normal vector 𝐍𝐍γ of curve 𝛾𝛾 
are given by: 

κγ = ‖𝐓𝐓γ′‖= 1
√2
√ϵ1α

2 + 2ϵ2α
2, 

𝐍𝐍γ =
1

√ϵ1α
2 + 2ϵ2α

2
(ϵ1α𝐌𝐌𝟏𝟏

𝛂𝛂 + 𝛜𝛜𝟐𝟐𝛂𝛂𝐌𝐌𝟐𝟐
𝛂𝛂 − 𝛜𝛜𝟐𝟐𝛂𝛂𝐁𝐁𝛂𝛂). 

Next, the binormal vector is determined as: 

𝐁𝐁γ = 𝐓𝐓γ × 𝐍𝐍γ. 

Substituting their values: 

𝐁𝐁γ =
1

√2ϵ1α
2 + 4ϵ2α

2
(−2ϵ2α𝐌𝐌𝟏𝟏

𝛂𝛂 + ϵ1α𝐌𝐌𝟐𝟐
𝛂𝛂 − ϵ1α𝐁𝐁𝛂𝛂). 

To find the torsion τγ, we differentiate 𝐍𝐍γ and use: 

τγ = 〈𝐍𝐍γ
′ , 𝐁𝐁γ〉. 

After simplification, we obtain: 
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τγ = 1
2√2

ϵ1
α −

(ϵ1
α

ϵ2
α)

′

1 + 2 (ϵ1
α

ϵ2
α)

2 

Setting: 

g = ϵ1
α

ϵ2
α 

we arrive at the final result.  

Theorem 3.3.2. Let α be an s-arc length parameterized regular curve 
in 𝐸𝐸3 ,equipped with the type-2 Bishop apparatus 
{M1

α, M2
α, Bα, 𝜖𝜖1

𝛼𝛼, 𝜖𝜖2
𝛼𝛼}. Let 𝛾𝛾 be the 𝐌𝐌2

α𝐁𝐁α-type-2 Bishop adjoint curve 
of α. The type-2 Bishop vector fields and curvatures associated with γ 
are given by: 

N1
γ = cosθγ

√1+2g2 𝐌𝐌1
α + ( 1

√2  sinθγ  + g
√1+2g2  cosθγ) 𝐌𝐌2

α +  + ( 1
√2  sinθγ −

g
√1+2g2  cosθγ) 𝐁𝐁α 

N2
γ = sinθγ

√1+2g2 𝐌𝐌1
α + (− 1

√2  cosθγ  + g
√1+2g2  sinθγ) 𝐌𝐌2

α + ( 1
√2  cosθγ −

g
√1+2g2  sinθγ) 𝐁𝐁α 

ϵ1
γ = ( 1

2√2 ϵ1
α + g′

2+g2) cosθγ  ,    ϵ2
γ = ( 1

2√2 ϵ1
α + g′

2+g2) sinθγ. 

Proof 3.3.2. By substituting Eqs. (15) and (16) into Eqs (4) and (5), 
the proof follows directly. 

Corollary 3.3.3. If the unit speed curve α: I → E3 be a slant helix with 
respect to the Bishop frame, then its 𝐌𝐌2

α𝐁𝐁α-type-2 Bishop adjoint 
curve is a general helix.  

Proof 3.3.3. By computing the the ratio of the torsion and curvature of 
the 𝐌𝐌2

α𝐁𝐁α -Bishop adjoint curve of α , as given in Theorem 3.3.1., we 
obtain: 
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τγ
κγ

=

1
2√2 ϵ1

α −
(ϵ1

α

ϵ2
α)

′

1 + 2 (ϵ1
α

ϵ2
α)

2

1
√2

√ϵ1
α2 + 2ϵ2

α2
. 

Since α is assumed to be a slant helix, we have g′ = 0, where g = ϵ1
α

ϵ2
α. 

Substituting this condition simplifies the expression to 

τγ
κγ

= − 1
√1 + 2g2

. 

Since this expression is constant, it follows that the 𝐌𝐌2
α𝐁𝐁α type-2 

Bishop adjoint curve of α is a general helix. 

Corollary 3.3.4. Let the unit speed curve 𝛼𝛼: 𝐼𝐼 → 𝐸𝐸3 be a slant helix 
with the Bishop frame. If we rotate the Frenet frame around the  𝐁𝐁α 
axis, the angle of rotation is 

θγ = 1
√2 ∫ √ϵ1

α2 + 2ϵ2
α2s

0 . 

Proof 3.3.4. According to type-2 Bishop formulas, the angle function 
θγ is given by: 

 θγ = ∫ κ(s)ds
s

0
. 

Substituting the expression for 𝜅𝜅γ , we obtain: 

θγ = 1
√2 ∫ √ϵ1

α2 + 2ϵ2
α2s

0 ds. 

 

3.4. 𝐌𝐌𝟏𝟏
𝛂𝛂𝐌𝐌2

α-type-2 Bishop adjoint curve 

Theorem 3.4.1 Let α be an s-arc length parameterized regular curve in 
𝐸𝐸3 with Bishop apparatus {𝐌𝐌1

α, 𝐌𝐌2
α, 𝐁𝐁α, 𝜖𝜖1

𝛼𝛼, 𝜖𝜖2
𝛼𝛼}. The Frenet vector 

fields, curvature and torsion of Ω are given by 
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𝐓𝐓Ω = 1
√2 (𝐌𝐌𝟏𝟏

𝛂𝛂 + 𝐌𝐌𝟐𝟐
𝛂𝛂),                                                           (20) 

𝐍𝐍Ω = −𝐁𝐁𝜶𝜶,                                                                         (21) 

𝐁𝐁Ω = 1
√2 (−𝐌𝐌𝟏𝟏

𝛂𝛂 + 𝐌𝐌𝟐𝟐
𝛂𝛂),                                                      (22) 

 𝜅𝜅Ω = 1
√2 (𝜖𝜖1

𝛼𝛼 + 𝜖𝜖2
𝛼𝛼)                                                            (23) 

𝜏𝜏Ω = 0                                                                               (24) 

where g = ϵ1
α

ϵ2
α.   

Proof 3.4.1. Differentiating Eq (8) and applying the Frenet formulas, 
we obtain 

dΩ
ds̃

ds̃
ds = 1

√2
(𝐌𝐌𝟏𝟏

𝛂𝛂 + 𝐌𝐌𝟐𝟐
𝛂𝛂), 

𝐓𝐓Ω
ds̃
ds = 1

√2
(𝐌𝐌𝟏𝟏

𝛂𝛂 + 𝐌𝐌𝟐𝟐
𝛂𝛂), 

taking the norm on both sides gives: 
ds̃
ds = 1, 

thus, we conclude: 

𝐓𝐓Ω = 1
√2

(𝐌𝐌𝟏𝟏
𝛂𝛂 + 𝐌𝐌𝟐𝟐

𝛂𝛂) 

differentiating (20) with respect to s and using Eq (2) we find 

𝐓𝐓Ω
′ = − 1

√2
(ϵ1

α + ϵ2
α)𝐁𝐁𝛂𝛂. 

From this, the curvature κΩ and principal normal vector 𝐍𝐍Ω of curve Ω 
are given by: 

κΩ = ‖𝐓𝐓Ω
′ ‖ = 1

√2
(ϵ1

α + ϵ2
α), 

NΩ = −𝐁𝐁𝜶𝜶. 
Next, the binormal vector is determined as: 
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𝐁𝐁Ω = 𝐓𝐓Ω ×  NΩ 

Substituting their values: 

𝐁𝐁Ω = 1
√2

(−𝐌𝐌𝟏𝟏
𝜶𝜶 + 𝐌𝐌𝟐𝟐

𝛂𝛂), 

to find the torsion τΩ, we differentiate 𝐍𝐍Ω and use: 

τΩ = 〈𝐍𝐍Ω
′ , 𝐁𝐁Ω〉. 

After simplification, we obtain   

τΩ = 0 

we arrive at the final result.  

Corollary 3.4.2. For the unit speed curve α: I → E3 its 𝐌𝐌1
α𝐌𝐌2

α -type-2 
Bishop adjoint curve is a planar curve. 

Proof 3.4.2. The proof is clear from Equation (24). 

Corollary 3.4.3. For the unit speed curve α: I → E3 its 𝐌𝐌1
α𝐌𝐌2

α -type-2 
Bishop adjoint curve is a Mannheim partner.  

Proof 3.4.3. The proof is clear from Equation (21). 

Corollary 3.4.4. Let the unit speed curve α: I → E3 be a slant helix 
with the Bishop frame. If we rotate the Frenet frame around the  𝐁𝐁α 
axis, the angle of rotation is 

θΩ = 1
√2 ∫ (ϵ1

α + ϵ2
α)s

0 . 

Proof 3.4.4. According to type-2 Bishop formulas, the angle function 
θΩ is given by: 

 θΩ = ∫ κ(s)ds
s

0
. 

Substituting the expression for κΩ, we obtain: 

θΩ = 1
√2 ∫ (ϵ1

α + ϵ2
α)s

0 ds. 
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4. RESULTS 

In this study, new adjoint curves were introduced by combining 
special Smarandache curves with integral curves in the type-2 Bishop 
frame. The geometric properties of these adjoint curves were 
systematically examined, and relationships between the original curve 
and its adjoint curves were established. As a result, necessary and 
sufficient conditions were derived for a curve to be classified as a 
general helix or a slant helix. 

Furthermore, it was demonstrated that certain adjoint curves 
correspond to well-known curve types, such as Mannheim partners or 
planar curves, under specific conditions. These findings contribute to 
the broader understanding of differential geometry by offering new 
perspectives on curve classifications and their interactions within the 
type-2 Bishop frame. The results obtained in this study can have 
applications in physics, engineering, and computer-aided geometric 
design, where curve structures play a crucial role. Future research may 
extend these adjoint curve concepts to different geometric spaces and 
explore their implications in various applied fields. 
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Introduction 
Fractional analysis is a mathematical discipline that focuses on derivatives 
and integrals of real or complex order. Differential equations with non-
integer derivatives serve as essential tools for modeling various physical 
phenomena. Consequently, beyond its mathematical significance, 
fractional calculus finds applications in diverse scientific fields, including 
physics, engineering, biology, and finance (see [1]-[4]). Some of the most 
extensive studies on fractional derivatives and integrals can be found in 
(see [5], [6]). 
One of the most intriguing aspects of fractional calculus is its reliance on 
operators. This characteristic allows researchers to select the most suitable 
operator for describing dynamic behaviors in real-world problems. The 
necessity of identifying optimal operators for different applications has led 
to the discovery of novel fractional operators, continuously enhancing the 
accuracy of models representing natural phenomena (see [7]-[9]). 
Additionally, various other types of innovative fractional derivatives have 
been explored in the literature (see [10], [11]). 
Meanwhile, fixed point theory stands as one of the most powerful tools in 
nonlinear analysis, particularly in solving differential, integral, and partial 
differential equations. It plays a fundamental role in numerous 
mathematical applications. Fixed point theorems provide significant 
insights into the existence and uniqueness of solutions for fractional 
differential equations, particularly in initial value and boundary value 
problems. However, obtaining exact analytical solutions for these 
equations is often challenging. As a result, extensive research has been 
conducted on numerical and approximation methods for solving fractional 
differential equations. In line with these efforts, various studies have 
focused on proving the existence and uniqueness of solutions (see [12]-
[15] and references therein). 
Building on fixed point theory, numerous contraction-type transformations 
have been introduced. These include Lipschitzian transformations, 
contraction transformations, contraction-like transformations, non-
expanding transformations, pseudo-contractions, semi-contractions, and 
weak contractions, among others (see [16]-[19]). 
In parallel with these advancements, various iteration methods have been 
developed and widely studied in fixed point theory. Some of the most 
notable iterative techniques include the Mann iteration method (see [20]), 
Krasnosel’skii iteration method (see [21]), Kirk iteration method (see 
[22]), Ishikawa iteration method (see [18]), Noor iteration method (see 
[23]), S iteration method (see [24]), and the recently introduced three-step 
iteration method (see [19]). Additionally, hybrid iteration methods that 
combine these approaches have proven to be highly effective. Some of 
these hybrid methods include the Kirk-Noor iteration method, Kirk-
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Ishikawa and Kirk-Mann iteration methods, Picard-Mann iteration 
method, Mann-Picard method, and Kirk-MP iteration method (see [25]-
[28]). 
Furthermore, in an iteration algorithm constructed using a given 
transformation, an alternative transformation known as the approximation 
operator can also be applied. Since the fixed point of the approximation 
operator differs from that of the original transformation, discrepancies may 
arise between the two. The concept of data dependency, which has been 
extensively examined in the literature, addresses the extent of this 
difference and how it can be quantified (see [34]-[37]). 
The structure of the paper is as follows: In Section 2, we present 
fundamental definitions and key theoretical results essential for our 
analysis. Section 3, we consider the following initial value problem for 
integro-differential equation, 𝑓𝑓 ∈ (𝐶𝐶[0, 𝐴𝐴] × ℝ, ℝ)           
                                                  

                     {
𝑑𝑑2𝑢𝑢(𝑠𝑠)

𝑑𝑑𝑠𝑠2 + 𝐼𝐼𝑎𝑎+
𝛼𝛼  𝑢𝑢(𝑠𝑠) = 𝑓𝑓(𝑠𝑠 , 𝑢𝑢(𝑠𝑠), 𝑢𝑢′(𝑠𝑠)) 

0 < 𝑠𝑠 < 𝐴𝐴  , 0 < 𝛼𝛼 < 1 
𝑢𝑢(𝑠𝑠) = 0 ,   𝑢𝑢′(𝑠𝑠) = 0 

                             (1)      

  
where 𝐴𝐴 constant number and 𝑓𝑓 ∈ (𝐶𝐶[0, 𝐴𝐴] × ℝ2, ℝ). Firstly, strong 
convergence of integro-differential equation is investigated by using the 
three-step iteration algorithm defined by Karakaya et al ([19]). Also, data 
dependency is obtained for integro-differential equations. Finally, we 
conclude with a discussion of our findings and potential future research 
directions. 
2. Known Results 
We present some basic definitions and preliminary facts which are used 
through the paper. 
Definition 2.1: Let 𝑢𝑢(𝑡𝑡) ∈ 𝐶𝐶([𝑎𝑎, 𝑏𝑏]) and 𝑎𝑎 < 𝑡𝑡 < 𝑏𝑏, 𝛼𝛼 ∈ (−∞, ∞). The 
Riemann-Liouville fractional integral of order 𝛼𝛼 is defined by  
 

𝐼𝐼𝑎𝑎+
𝛼𝛼 𝑢𝑢(𝑡𝑡): = 1

Γ(𝛼𝛼) ∫
𝑎𝑎

𝑡𝑡
𝑢𝑢(𝑠𝑠)

(𝑡𝑡 − 𝑠𝑠)1−𝛼𝛼 𝑑𝑑𝑑𝑑. 

 
The same definition for 𝛼𝛼 ∈ (0,1) can be expressed as  
 

𝐷𝐷𝑎𝑎+
𝛼𝛼 𝑢𝑢(𝑡𝑡): = 1

Γ(1 − 𝛼𝛼)
𝑑𝑑
𝑑𝑑𝑑𝑑 ∫

𝑎𝑎

𝑡𝑡
𝑢𝑢(𝑠𝑠)

(𝑡𝑡 − 𝑠𝑠)𝛼𝛼 𝑑𝑑𝑑𝑑. 

 



34  . Lale CONA

The Riemann-Liouville fractional derivative of order 𝛼𝛼. Here,  
 

Γ(𝛼𝛼) = ∫
0

∞

𝑡𝑡𝛼𝛼−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑  ,    (𝛼𝛼 > 0). 

 
(see [6]).  
Definition 2.2: 𝐶𝐶(1)[𝑎𝑎, 𝑏𝑏] = (𝐶𝐶(1)[𝑎𝑎, 𝑏𝑏], 𝑑𝑑) is the complete space defined 
on the interval [𝑎𝑎, 𝑏𝑏] with the metric 𝑑𝑑 defined by 
 

𝑑𝑑(𝑢𝑢, 𝑣𝑣) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠∈[0,𝐴𝐴]

|𝑢𝑢(𝑠𝑠) − 𝑣𝑣(𝑠𝑠)| + 𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠∈[0,𝐴𝐴]

|𝑢𝑢′(𝑠𝑠) − 𝑣𝑣′(𝑠𝑠)| 
 

(see [33]). 
Definition 2.3: Let (𝐸𝐸, 𝑑𝑑) be a metric space and 𝑇𝑇: 𝐸𝐸 → 𝐸𝐸 be a mapping. 
𝑇𝑇 is called a Lipschitzian mapping, if there is a number 𝐿𝐿 > 0 such that 
𝑑𝑑(𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇) ≤ 𝐿𝐿𝐿𝐿(𝑢𝑢, 𝑣𝑣) for all 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸 (see [29]).  
Definition 2.4: Let (𝐸𝐸, 𝑑𝑑) be a metric space and 𝑇𝑇: 𝐸𝐸 → 𝐸𝐸 be a 
Lipschitzian mapping. 𝑇𝑇 is called a contraction mapping, if there is at least 
one 𝜆𝜆 ∈ (0,1) real number such that 𝑑𝑑(𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇) ≤ 𝜆𝜆𝜆𝜆(𝑢𝑢, 𝑣𝑣) for all 𝑢𝑢, 𝑣𝑣 ∈
𝐸𝐸. 𝜆𝜆 is called the contraction ratio (see [29]).  
The definition of contraction mapping in 𝐸𝐸 normed space can be expressed 
as follows: 
 

‖𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇‖ ≤ 𝜆𝜆‖𝑢𝑢 − 𝑣𝑣‖ 
 

where 𝜆𝜆 ∈ (0,1) the contraction ratio (see [29]). 
Now, let’s state the Banach fixed point theorem (see [30]). 
Theorem 2.1: If (𝐸𝐸, 𝑑𝑑) is a complete metric space and 𝑇𝑇: 𝐸𝐸 → 𝐸𝐸 is a 
contraction mapping, 

i.    𝑇𝑇 has one and only one fixed point 𝑢𝑢 ∈ 𝐸𝐸. 
ii.    For any 𝑢𝑢0 ∈ 𝐸𝐸, iteration sequence (𝑇𝑇𝑛𝑛𝑢𝑢0)  (ie iteration sequence (𝑢𝑢𝑛𝑛) 

defined by 𝑢𝑢𝑛𝑛   = 𝑇𝑇𝑢𝑢𝑛𝑛−1 for all 𝑛𝑛 ∈ ℕ) converges to unique fixed point of 
𝑇𝑇.  
The following three steps iteration algorithm, defined by Karakaya et al. in 
2017 (see [19]), has been shown to be faster than many iteration algorithms 
such as Picard, Mann, Ishikawa, Noor, SP, S, CR and Picard-S: 
Definition 2.5: The iteration method 
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                              {
𝑢𝑢𝑛𝑛+1 = 𝑇𝑇𝑣𝑣𝑛𝑛
𝑣𝑣𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑤𝑤𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑤𝑤𝑛𝑛
𝑤𝑤𝑛𝑛 = 𝑇𝑇𝑢𝑢𝑛𝑛

                         (2) 

 
for 𝑢𝑢0 ∈ 𝐸𝐸, where 𝐸𝐸 is a Banach space, 𝑇𝑇: 𝐸𝐸 → 𝐸𝐸 is an operator, and 
{𝛽𝛽𝑛𝑛}𝑛𝑛=0

∞ ⊂ [0,1] is a sequence satisfying certain conditions, is called the 
three-step iteration method. 
Theorem 2.2: Let 𝑓𝑓 be a continuous function defined on 

𝐷𝐷 = {(𝑠𝑠, 𝑢𝑢, 𝑣𝑣):  𝑠𝑠 ∈ [0, 𝐴𝐴] } ⊆ ℝ3, 
 
and there exists a constant 𝑘𝑘 > 0 such that |𝑓𝑓(𝑠𝑠, 𝑢𝑢, 𝑣𝑣)| ≤ 𝑘𝑘  for all 𝑠𝑠 ∈ 𝐷𝐷. 
And, suppose that 𝑓𝑓 satisfies a Lipschitz condition on 𝐷𝐷 with respect to its 
second and third arguments. Thus, for arbitrary (𝑠𝑠, 𝑢𝑢, 𝑧𝑧), (𝑠𝑠, 𝑣𝑣, 𝑤𝑤) ∈ 𝐷𝐷  
there is a positive constant 𝐿𝐿 such that 
 

               |𝑓𝑓(𝑠𝑠, 𝑢𝑢, 𝑧𝑧) −  𝑓𝑓(𝑠𝑠, 𝑣𝑣, 𝑤𝑤)| ≤ 𝐿𝐿(|𝑢𝑢 −  𝑣𝑣| + |𝑧𝑧 − 𝑤𝑤|)             (3)  
                      

is valid. Also, let 
 

ℎ(𝛼𝛼, 𝐴𝐴, 𝐿𝐿) = 𝐴𝐴𝛼𝛼+2

𝛤𝛤(𝛼𝛼 + 3) + 𝐿𝐿 𝐴𝐴2

2  , 

 
and suppose that 
 

                                                ℎ(𝛼𝛼, 𝐴𝐴, 𝐿𝐿) < 1.                                    (4) 
 

Then, initial value problem (1) has a unique solution 𝑢𝑢 ∈ 𝐶𝐶(1)[0, 𝐴𝐴]. 
Definition 2.6: Let 𝑇𝑇1, 𝑇𝑇2: 𝐾𝐾 → 𝐾𝐾 be operator. If ‖𝑇𝑇1𝑢𝑢 − 𝑇𝑇2𝑢𝑢‖ ≤ 𝜀𝜀 for 
each 𝑢𝑢 ∈ 𝐾𝐾 and constant 𝜀𝜀 > 0, then 𝑇𝑇2 is called the approximation 
operator of 𝑇𝑇1 (see [31]). 
Lemma 2.1: Let {𝑎𝑎𝑛𝑛}𝑛𝑛=0

∞  be a non-negative real sequence and there exists 
𝑛𝑛0 ∈ ℕ such that for each 𝑛𝑛 ≥ 𝑛𝑛0 satisfting the following condition:   
 

𝑎𝑎𝑛𝑛+1 ≤ (1 − 𝜇𝜇𝑛𝑛)𝑎𝑎𝑛𝑛 + 𝜇𝜇𝑛𝑛𝛾𝛾𝑛𝑛, 
 

where 𝜇𝜇𝑛𝑛 ∈ (0,1) such that ∑∞
𝑛𝑛=0 𝜇𝜇𝑛𝑛 = ∞ and 𝛾𝛾𝑛𝑛 ≥ 0. Then the following 

inequality holds: 
 

0 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑛𝑛 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝛾𝛾𝑛𝑛 
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(see [31]).  
3 Main Result 
Theorem 3.1: Let 𝑇𝑇: (𝐶𝐶(1)[0, 𝐴𝐴], ‖∙‖) → (𝐶𝐶(1)[0, 𝐴𝐴], ‖∙‖) be an operator 
and {𝛽𝛽𝑛𝑛}𝑛𝑛=0

∞ ⊂ [0,1] be a sequence satisfying certain conditions. In this 
case, the integro-differential equation given by equation (1) has a unique 
solution in the form of 𝑢𝑢∗ ∈ 𝐶𝐶[0, 𝐴𝐴] and the sequence {𝑢𝑢𝑛𝑛}𝑛𝑛=0

∞  obtained 
from the iteration algorithm given by equation (2) converges to this 
solution. 
Proof: By integrating both sides of integro-differential equation (1), we 
obtain integral equation 
 
𝑢𝑢(𝑠𝑠) = − 1

𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑𝑞𝑞
0 )𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟

0
𝑠𝑠

0 + ∫ ∫ 𝑓𝑓(𝑞𝑞 , 𝑢𝑢(𝑞𝑞), 𝑢𝑢′(𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟
0

𝑠𝑠
0 .       (5) 

We can be written in the equivalent integral form (5), which is in the form 
𝑢𝑢 = 𝑇𝑇𝑇𝑇, where 𝑇𝑇: 𝐶𝐶(1)[0, 𝐴𝐴] → 𝐶𝐶(1)[0, 𝐴𝐴] is an operator defined by 
 
𝑇𝑇𝑇𝑇(𝑠𝑠) = − 1

𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑𝑞𝑞
0 )𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟

0
𝑠𝑠

0 + ∫ ∫ 𝑓𝑓(𝑞𝑞, 𝑢𝑢(𝑞𝑞), 𝑢𝑢′(𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟
0

𝑠𝑠
0   (6) 

 
where 𝑓𝑓 is continuous function on the rectangle 𝐷𝐷. Consider the sequence 
{𝑢𝑢𝑛𝑛}𝑛𝑛=0

∞  obtained from the iteration algorithm given by equation (2) 
constructed with the operator 𝑇𝑇: (𝐶𝐶(1)[0, 𝐴𝐴], ‖∙‖) → (𝐶𝐶(1)[0, 𝐴𝐴], ‖∙‖). It 
will be shown that for 𝑛𝑛 → ∞ is 𝑢𝑢𝑛𝑛 → 𝑢𝑢∗. Using equation (2) and 
conditions of Theorem 2.2, we are obtained the following inequality: 
 
|𝑢𝑢𝑛𝑛+1(𝑡𝑡) − 𝑢𝑢∗(𝑡𝑡)| = |𝑇𝑇𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑇𝑇𝑢𝑢∗(𝑡𝑡)| 
 

= |− 1
𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑣𝑣𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞

0
) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0
+ ∫ ∫ 𝑓𝑓(𝑞𝑞 , 𝑣𝑣𝑛𝑛(𝑞𝑞), 𝑣𝑣𝑛𝑛

′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑟𝑟

0

𝑠𝑠

0
 

 

     + 1
𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑢𝑢∗(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞

0
) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0
− ∫ ∫ 𝑓𝑓(𝑞𝑞 , 𝑢𝑢∗(𝑞𝑞), 𝑢𝑢∗

′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑟𝑟

0

𝑠𝑠

0
| 

   ≤ 1
𝛤𝛤(𝛼𝛼) ∫ ∫ ∫(𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1

𝑞𝑞

0

𝑟𝑟

0

𝑠𝑠

0

|𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑢𝑢∗(𝑡𝑡)|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

   + ∫ ∫|𝑓𝑓(𝑞𝑞 , 𝑣𝑣𝑛𝑛(𝑞𝑞), 𝑣𝑣𝑛𝑛
′ (𝑞𝑞)) − 𝑓𝑓(𝑞𝑞 , 𝑢𝑢∗(𝑞𝑞), 𝑢𝑢∗

′ (𝑞𝑞))|
𝑟𝑟

0

𝑠𝑠

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
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     ≤ 1
𝛤𝛤(𝛼𝛼) ‖𝑣𝑣𝑛𝑛 − 𝑢𝑢∗‖∞ ∫ ∫ ∫(𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1

𝑞𝑞

0

𝑟𝑟

0

𝑠𝑠

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

     + ∫ ∫ 𝐿𝐿(| 𝑣𝑣𝑛𝑛(𝑞𝑞) −  𝑢𝑢∗(𝑞𝑞)| + |𝑣𝑣𝑛𝑛
′ (𝑞𝑞) − 𝑢𝑢∗

′ (𝑞𝑞)|)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑟𝑟

0

𝑠𝑠

0
 

      ≤ ( 𝐴𝐴𝛼𝛼+2

𝛤𝛤(𝛼𝛼 + 3) + 𝐿𝐿 𝐴𝐴2

2 ) ‖𝑣𝑣𝑛𝑛 − 𝑢𝑢∗‖. 

 

Since ℎ(𝛼𝛼, 𝐴𝐴, 𝐿𝐿) = 𝐴𝐴𝛼𝛼+2

𝛤𝛤(𝛼𝛼+3) + 𝐿𝐿 𝐴𝐴2

2  , we have 

 
‖𝑢𝑢𝑛𝑛+1 − 𝑢𝑢∗‖ ≤ ℎ‖𝑣𝑣𝑛𝑛 − 𝑢𝑢∗‖. (7) 
 
By making the necessary calculations, the following inequalities are 
obtained 
 
|𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑢𝑢∗(𝑡𝑡)| = |(1 − 𝛽𝛽𝑛𝑛)𝑤𝑤𝑛𝑛(𝑡𝑡) + 𝛽𝛽𝑛𝑛𝑇𝑇𝑤𝑤𝑛𝑛(𝑡𝑡) − 𝑇𝑇𝑢𝑢∗(𝑡𝑡)| 
                        ≤ (1 − 𝛽𝛽𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢∗‖ + 𝛽𝛽𝑛𝑛‖𝑇𝑇𝑤𝑤𝑛𝑛 − 𝑇𝑇𝑢𝑢∗‖ 
                              ≤ (1 − 𝛽𝛽𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢∗‖ 

+𝛽𝛽𝑛𝑛  
‖

‖− 1
𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑤𝑤𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞

0
) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0
+ ∫ ∫ 𝑓𝑓(𝑞𝑞 , 𝑤𝑤𝑛𝑛(𝑞𝑞), 𝑤𝑤𝑛𝑛

′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑟𝑟

0

𝑠𝑠

0

− 1
𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑢𝑢∗(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞

0
) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0
+ ∫ ∫ 𝑓𝑓(𝑞𝑞 , 𝑢𝑢∗(𝑞𝑞), 𝑢𝑢∗

′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑟𝑟

0

𝑠𝑠

0

‖

‖
 

≤ (1 − 𝛽𝛽𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢∗‖ 

+𝛽𝛽𝑛𝑛 ‖ 1
𝛤𝛤(𝛼𝛼) ∫ ∫ ∫(𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1(𝑤𝑤𝑛𝑛(𝑡𝑡) − 𝑢𝑢∗(𝑡𝑡))

𝑞𝑞

0

𝑟𝑟

0

𝑠𝑠

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖ 

+𝛽𝛽𝑛𝑛 ‖∫ ∫ (𝑓𝑓(𝑞𝑞 , 𝑤𝑤𝑛𝑛(𝑞𝑞), 𝑤𝑤𝑛𝑛
′ (𝑞𝑞)) − 𝑓𝑓(𝑞𝑞 , 𝑢𝑢∗(𝑞𝑞), 𝑢𝑢∗

′ (𝑞𝑞)))
𝑟𝑟

0

𝑠𝑠

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖ 

 ≤ (1 − 𝛽𝛽𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢∗‖ 

+ 1
𝛤𝛤(𝛼𝛼) 𝛽𝛽𝑛𝑛 ∫ ∫ ∫‖𝑤𝑤𝑛𝑛 − 𝑢𝑢∗‖

𝑞𝑞

0

𝑟𝑟

0

𝑠𝑠

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝛽𝛽𝑛𝑛 ∫ ∫‖𝑓𝑓(𝑞𝑞 , 𝑤𝑤𝑛𝑛, 𝑤𝑤𝑛𝑛

′ ) − 𝑓𝑓(𝑞𝑞 , 𝑢𝑢∗, 𝑢𝑢∗
′ )‖

𝑟𝑟

0

𝑠𝑠

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 
 = (1 − 𝛽𝛽𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢∗‖ 

 +𝛽𝛽𝑛𝑛 ( 𝐴𝐴𝛼𝛼+2

𝛤𝛤(𝛼𝛼 + 3)) ‖𝑤𝑤𝑛𝑛 − 𝑢𝑢∗‖ + 𝛽𝛽𝑛𝑛𝐿𝐿 𝐴𝐴2

2 ‖𝑤𝑤𝑛𝑛 − 𝑢𝑢∗‖ 
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= (1 − 𝛽𝛽𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢∗‖ + ( 𝐴𝐴𝛼𝛼+2

𝛤𝛤(𝛼𝛼 + 3) + 𝐿𝐿 𝐴𝐴2

2 ) 𝛽𝛽𝑛𝑛‖𝑤𝑤𝑛𝑛 − 𝑢𝑢∗‖ 

= (1 − 𝛽𝛽𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢∗‖ + ℎ𝛽𝛽𝑛𝑛‖𝑤𝑤𝑛𝑛 − 𝑢𝑢∗‖ 
 = (1 − 𝛽𝛽𝑛𝑛 + ℎ𝛽𝛽𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢∗‖. 
 
So, 
 

                     ‖𝑣𝑣𝑛𝑛 − 𝑢𝑢∗‖ ≤ (1 − 𝛽𝛽𝑛𝑛 + ℎ𝛽𝛽𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢∗‖.                     (8) 
 

Similarly, 
 
|𝑤𝑤𝑛𝑛(𝑡𝑡) − 𝑢𝑢∗(𝑡𝑡)| = |𝑇𝑇𝑢𝑢𝑛𝑛(𝑡𝑡) − 𝑇𝑇𝑢𝑢∗(𝑡𝑡)| 

= |− 1
𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑢𝑢𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞

0
) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0
+ ∫ ∫ 𝑓𝑓(𝑞𝑞 , 𝑢𝑢𝑛𝑛(𝑞𝑞), 𝑢𝑢𝑛𝑛

′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑟𝑟

0

𝑠𝑠

0
 

 + 1
𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑢𝑢∗(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞

0
) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0
− ∫ ∫ 𝑓𝑓(𝑞𝑞 , 𝑢𝑢∗(𝑞𝑞), 𝑢𝑢∗

′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑟𝑟

0

𝑠𝑠

0
| 

≤ 1
𝛤𝛤(𝛼𝛼) ∫ ∫ ∫‖𝑢𝑢𝑛𝑛 − 𝑢𝑢∗‖

𝑞𝑞

0

𝑟𝑟

0

𝑠𝑠

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + ∫ ∫‖𝑓𝑓(𝑞𝑞 , 𝑢𝑢𝑛𝑛, 𝑢𝑢𝑛𝑛

′ ) − 𝑓𝑓(𝑞𝑞 , 𝑢𝑢∗, 𝑢𝑢∗
′ )‖

𝑟𝑟

0

𝑠𝑠

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

= ( 𝐴𝐴𝛼𝛼+2

𝛤𝛤(𝛼𝛼 + 3) + 𝐿𝐿 𝐴𝐴2

2 ) ‖𝑢𝑢𝑛𝑛 − 𝑢𝑢∗‖ 

= ℎ‖𝑢𝑢𝑛𝑛 − 𝑢𝑢∗‖ 
 ‖𝑤𝑤𝑛𝑛 − 𝑢𝑢∗‖ ≤ ℎ‖𝑢𝑢𝑛𝑛 − 𝑢𝑢∗‖ (9) 
 
is found. 
If inequalities (9) and (8) are written in inequality (7), the following 
inequality is obtained. 
 
 ‖𝑢𝑢𝑛𝑛+1 − 𝑢𝑢∗‖ ≤ ℎ2(1 − 𝛽𝛽𝑛𝑛 + ℎ𝛽𝛽𝑛𝑛)‖𝑢𝑢𝑛𝑛 − 𝑢𝑢∗‖ 
 ‖𝑢𝑢𝑛𝑛 − 𝑢𝑢∗‖ ≤ ℎ2(1 − 𝛽𝛽𝑛𝑛 + ℎ𝛽𝛽𝑛𝑛)‖𝑢𝑢𝑛𝑛−1 − 𝑢𝑢∗‖ 

⋮                                                                      
 ‖𝑢𝑢1 − 𝑢𝑢∗‖ ≤ ℎ2(1 − 𝛽𝛽𝑛𝑛 + ℎ𝛽𝛽𝑛𝑛)‖𝑢𝑢0 − 𝑢𝑢∗‖ 
 
We are obtain the following inequality by applying induction to the last 
inequality, 
 
 ‖𝑢𝑢𝑛𝑛+1 − 𝑢𝑢∗‖ ≤ ℎ2(𝑛𝑛+1) ∏ [1 − 𝛽𝛽𝑖𝑖 + ℎ𝛽𝛽𝑖𝑖]𝑛𝑛

𝑖𝑖=0 ‖𝑢𝑢0 − 𝑢𝑢∗‖. 
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Also, ∀𝑥𝑥 ∈ [0,1] for we have 1 − 𝑥𝑥 ≤ 𝑒𝑒−𝑥𝑥. So, 
 
 ‖𝑢𝑢𝑛𝑛+1 − 𝑢𝑢∗‖ ≤ ℎ2(𝑛𝑛+1)‖𝑢𝑢0 − 𝑢𝑢∗‖∏ 𝑒𝑒−𝛽𝛽𝑖𝑖+ℎ𝛽𝛽𝑖𝑖𝑛𝑛

𝑖𝑖=0  
 ‖𝑢𝑢𝑛𝑛+1 − 𝑢𝑢∗‖ ≤ ℎ2(𝑛𝑛+1)‖𝑢𝑢0 − 𝑢𝑢∗‖𝑒𝑒−(1−ℎ)∑ 𝛽𝛽𝑖𝑖𝑛𝑛

𝑖𝑖=0 , 
 
we obtain 
 
 lim

𝑛𝑛→∞
‖𝑢𝑢𝑛𝑛 − 𝑢𝑢∗‖ = 0. 

 
Now, let us examine the data dependency of the solution of the integro-
differential equation given by equation (1) using the iteration algorithm 
given in equation (2). Thus, we consider the following initial value 
problem for second integro-differential equation 
 

                         {
𝑑𝑑2𝜑𝜑(𝑠𝑠)
𝑑𝑑𝑠𝑠2 + 𝐼𝐼𝑎𝑎+𝛼𝛼  𝜑𝜑(𝑠𝑠) = 𝑔𝑔(𝑠𝑠 , 𝑥𝑥(𝑠𝑠), 𝑥𝑥′(𝑠𝑠))

0 < 𝑠𝑠 < 𝐴𝐴  ,   0 < 𝛼𝛼 < 1
𝜑𝜑(𝑠𝑠) = 0 ,   𝜑𝜑′(𝑠𝑠) = 0 .

                 (10)   

                                 
By integrating both sides of integro-differential equation (10), we obtain 
integral equation 
 
𝜑𝜑(𝑡𝑡) = − 1

𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑥𝑥(𝑡𝑡)𝑑𝑑𝑑𝑑𝑞𝑞
0 )𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟

0
𝑠𝑠
0 + ∫ ∫ 𝑔𝑔(𝑞𝑞, 𝑥𝑥(𝑞𝑞), 𝑥𝑥′(𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟

0
𝑠𝑠
0   (11) 

 
We can be written in the equivalent integral form (11), which is in the form 
𝑥𝑥 = 𝑆𝑆𝑆𝑆, where 𝑆𝑆: (𝐶𝐶(1)[0, 𝐴𝐴], ‖⋅‖) → (𝐶𝐶(1)[0, 𝐴𝐴], ‖⋅‖)  is an operator 
defined by 
 
     𝑆𝑆𝑆𝑆(𝑡𝑡) = − 1

𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑥𝑥(𝑡𝑡)𝑑𝑑𝑑𝑑𝑞𝑞
0 )𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟

0
𝑠𝑠
0 + ∫ ∫ 𝑔𝑔(𝑞𝑞, 𝑥𝑥(𝑞𝑞), 𝑥𝑥′(𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟

0
𝑠𝑠
0  (12) 

 
where 𝑔𝑔 is continuous function on the rectangle 𝐷𝐷. 
If the iteration algorithm given in equation (2) is reconstructed with 
operators 𝑇𝑇(6) and 𝑆𝑆(12), respectively, the following iteration algorithms 
can be written. 
 

{ 
 
  
𝑢𝑢𝑛𝑛+1(𝑡𝑡) = −

1
𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑣𝑣𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞
0 )𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟

0
𝑠𝑠
0 + ∫ ∫ 𝑓𝑓(𝑞𝑞 , 𝑣𝑣𝑛𝑛(𝑞𝑞), 𝑣𝑣𝑛𝑛′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟
0

𝑠𝑠
0

𝑣𝑣𝑛𝑛(𝑡𝑡) = − 1
𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑤𝑤𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞
0 )𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟

0
𝑠𝑠
0 + ∫ ∫ 𝑓𝑓(𝑞𝑞 , 𝑤𝑤𝑛𝑛(𝑞𝑞), 𝑤𝑤𝑛𝑛′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟
0

𝑠𝑠
0

𝑤𝑤𝑛𝑛(𝑡𝑡) = −
1

𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑢𝑢𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑞𝑞
0 )𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟

0
𝑠𝑠
0 + ∫ ∫ 𝑓𝑓(𝑞𝑞 , 𝑢𝑢𝑛𝑛(𝑞𝑞), 𝑢𝑢𝑛𝑛′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟
0

𝑠𝑠
0

   (13)  
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{ 
 
  
𝜑𝜑𝑛𝑛+1(𝑡𝑡) = −

1
𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝜓𝜓𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞
0 )𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟

0
𝑠𝑠
0 + ∫ ∫ 𝑔𝑔(𝑞𝑞 , 𝜓𝜓𝑛𝑛(𝑞𝑞), 𝜓𝜓𝑛𝑛′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟
0

𝑠𝑠
0

𝜓𝜓𝑛𝑛(𝑡𝑡) = − 1
𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝜙𝜙𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞
0 )𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟

0
𝑠𝑠
0 + ∫ ∫ 𝑔𝑔(𝑞𝑞 , 𝜙𝜙𝑛𝑛(𝑞𝑞), 𝜙𝜙𝑛𝑛′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟
0

𝑠𝑠
0

𝜙𝜙𝑛𝑛(𝑡𝑡) = − 1
𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝜑𝜑𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞
0 )𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟

0
𝑠𝑠
0 + ∫ ∫ 𝑔𝑔(𝑞𝑞 , 𝜑𝜑𝑛𝑛(𝑞𝑞), 𝜑𝜑𝑛𝑛′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟
0

𝑠𝑠
0

 (14) 

 
Theorem 3.2: Let the sequence {𝛽𝛽𝑛𝑛}𝑛𝑛=0∞ ⊂ [0,1] satisfy the condition 𝛽𝛽𝑛𝑛 ≥
1
2 for each 𝑛𝑛 ∈ ℕ. Consider the sequence {𝑢𝑢𝑛𝑛}𝑛𝑛=0∞  obtained from equation 
(13) and the sequence {𝜑𝜑𝑛𝑛}𝑛𝑛=0∞  obtained from equation (14). Let the 
solutions of the integral equations (5) and (11) be 𝑢𝑢∗ and 𝑝𝑝, respectively, 
with the conditions of Theorem 3.1 
i) Let the constant 𝜀𝜀1 exist such that  
 

‖𝑓𝑓(𝑞𝑞 , 𝑢𝑢𝑛𝑛(𝑞𝑞), 𝑢𝑢𝑛𝑛′ (𝑞𝑞)) − 𝑔𝑔(𝑞𝑞 , 𝜑𝜑𝑛𝑛(𝑞𝑞), 𝜑𝜑𝑛𝑛′ (𝑞𝑞))‖ ≤ 𝜀𝜀1 
 

for each (𝑡𝑡, 𝑠𝑠) ∈ [0, 𝐴𝐴]. 
ii) Let 𝑀𝑀 = 𝐴𝐴𝛼𝛼+1

𝛤𝛤(𝛼𝛼+3) ≤ 1.  
 
                  If 𝑢𝑢𝑛𝑛 → 𝑢𝑢∗ and 𝜑𝜑𝑛𝑛 → 𝑝𝑝 as 𝑛𝑛 → ∞, then the inequality 
 

 ‖𝑢𝑢∗ − 𝑝𝑝‖ ≤
5𝐴𝐴2𝜀𝜀1
2(1−𝑀𝑀) 

 
is valid.  
Proof: With the hypotheses of the Theorem 3.2, the following inequalities 
(15), (16) and (17) are obtained.  
 
‖𝑢𝑢𝑛𝑛+1 − 𝜑𝜑𝑛𝑛+1‖ = ‖𝑇𝑇𝑣𝑣𝑛𝑛 − 𝑆𝑆𝜓𝜓𝑛𝑛‖ 

=
‖

‖ −
1

𝛤𝛤(𝛼𝛼)∫∫(∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑣𝑣𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑞𝑞

0
) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0
+ ∫∫𝑓𝑓(𝑞𝑞, 𝑣𝑣𝑛𝑛(𝑞𝑞), 𝑣𝑣𝑛𝑛′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0

− 1
𝛤𝛤(𝛼𝛼)∫∫(∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝜓𝜓𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞

0
) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0
+ ∫∫𝑔𝑔(𝑞𝑞, 𝜓𝜓𝑛𝑛(𝑞𝑞), 𝜓𝜓𝑛𝑛′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0

‖

‖
 

 ≤ 1
𝛤𝛤(𝛼𝛼)∫∫∫(𝑞𝑞 − 𝑡𝑡)

𝛼𝛼−1
𝑞𝑞

0

𝑟𝑟

0

𝑠𝑠

0

‖𝑣𝑣𝑛𝑛 − 𝜓𝜓𝑛𝑛‖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

+∫∫‖𝑓𝑓(𝑞𝑞 , 𝑣𝑣𝑛𝑛(𝑞𝑞), 𝑣𝑣𝑛𝑛′ (𝑞𝑞)) − 𝑔𝑔(𝑞𝑞 , 𝜓𝜓𝑛𝑛(𝑞𝑞), 𝜓𝜓𝑛𝑛′ (𝑞𝑞))‖
𝑟𝑟

0

𝑠𝑠

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
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 ≤ 1
𝛤𝛤(𝛼𝛼) ‖𝑣𝑣𝑛𝑛 − 𝜓𝜓𝑛𝑛‖ ∫ ∫ ∫(𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1

𝑞𝑞

0

𝑟𝑟

0

𝑠𝑠

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + ∫ ∫ 𝜀𝜀1 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0
 

= 𝐴𝐴𝛼𝛼+2

𝛤𝛤(𝛼𝛼 + 3) ‖𝑣𝑣𝑛𝑛 − 𝜓𝜓𝑛𝑛‖ + 𝜀𝜀1
𝐴𝐴2

2  

                     ‖𝑢𝑢𝑛𝑛+1 − 𝜑𝜑𝑛𝑛+1‖ ≤ 𝑀𝑀‖𝑣𝑣𝑛𝑛 − 𝜓𝜓𝑛𝑛‖ + 𝐴𝐴2

2 𝜀𝜀1                    (15)                                                
Similarly, 
 
‖𝑣𝑣𝑛𝑛+1 − 𝜓𝜓𝑛𝑛+1‖ = ‖𝑇𝑇𝑤𝑤𝑛𝑛 − 𝑆𝑆𝜙𝜙𝑛𝑛‖ 
‖𝑣𝑣𝑛𝑛+1 − 𝜓𝜓𝑛𝑛+1‖ ≤ (1 − 𝛽𝛽𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝜙𝜙𝑛𝑛‖ + 𝛽𝛽𝑛𝑛‖𝑇𝑇𝑤𝑤𝑛𝑛 − 𝑆𝑆𝜙𝜙𝑛𝑛‖ 
= (1 − 𝛽𝛽𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝜙𝜙𝑛𝑛‖ 

+𝛽𝛽𝑛𝑛
‖

‖− 1
𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑤𝑤𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞

0
) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0
+ ∫ ∫ 𝑓𝑓(𝑞𝑞, 𝑤𝑤𝑛𝑛(𝑞𝑞), 𝑤𝑤𝑛𝑛

′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑟𝑟

0

𝑠𝑠

0

− 1
𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝜙𝜙𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞

0
) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0
+ ∫ ∫ 𝑔𝑔(𝑞𝑞, 𝜙𝜙𝑛𝑛(𝑞𝑞), 𝜙𝜙𝑛𝑛

′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑟𝑟

0

𝑠𝑠

0

‖

‖
 

≤ (1 − 𝛽𝛽𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝜙𝜙𝑛𝑛‖ 

+𝛽𝛽𝑛𝑛
1

Γ(𝛼𝛼) ‖𝑤𝑤𝑛𝑛 − 𝜙𝜙𝑛𝑛‖ ∫ ∫ ∫(𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1
𝑞𝑞

0

𝑟𝑟

0

𝑠𝑠

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

+𝛽𝛽𝑛𝑛 ∫ ∫‖𝑓𝑓(𝑞𝑞 , 𝑤𝑤𝑛𝑛(𝑞𝑞), 𝑤𝑤𝑛𝑛
′ (𝑞𝑞)) − 𝑔𝑔(𝑞𝑞 , 𝜙𝜙𝑛𝑛(𝑞𝑞), 𝜙𝜙𝑛𝑛

′ (𝑞𝑞))‖
𝑟𝑟

0

𝑠𝑠

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

≤ (1 − 𝛽𝛽𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝜙𝜙𝑛𝑛‖ + 𝛽𝛽𝑛𝑛𝑀𝑀‖𝑤𝑤𝑛𝑛 − 𝜙𝜙𝑛𝑛‖ + 𝛽𝛽𝑛𝑛𝜀𝜀1
𝐴𝐴2

2  

      ‖𝑣𝑣𝑛𝑛+1 − 𝜓𝜓𝑛𝑛+1‖ ≤ (1 − 𝛽𝛽𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑀𝑀)‖𝑤𝑤𝑛𝑛 − 𝜙𝜙𝑛𝑛‖ + 𝛽𝛽𝑛𝑛𝜀𝜀1
𝐴𝐴2

2         (16) 
 
‖𝑤𝑤𝑛𝑛 − 𝜙𝜙𝑛𝑛‖ = ‖𝑇𝑇𝑢𝑢𝑛𝑛 − 𝑆𝑆𝜑𝜑𝑛𝑛‖ 

≤
‖

‖ − 1
𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝑢𝑢𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞

0
) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0
+ ∫ ∫ 𝑓𝑓(𝑞𝑞, 𝑢𝑢𝑛𝑛(𝑞𝑞), 𝑢𝑢𝑛𝑛

′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑟𝑟

0

𝑠𝑠

0

− 1
𝛤𝛤(𝛼𝛼) ∫ ∫ (∫ (𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1𝜑𝜑𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑞𝑞

0
) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0
+ ∫ ∫ 𝑔𝑔(𝑞𝑞, 𝜑𝜑𝑛𝑛(𝑞𝑞), 𝜑𝜑𝑛𝑛

′ (𝑞𝑞))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑟𝑟

0

𝑠𝑠

0

‖

‖
 

≤ 1
𝛤𝛤(𝛼𝛼) ∫ ∫ ∫(𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1

𝑞𝑞

0

𝑟𝑟

0

𝑠𝑠

0

‖𝑢𝑢𝑛𝑛 − 𝜑𝜑𝑛𝑛‖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

+ ∫ ∫‖𝑓𝑓(𝑞𝑞 , 𝑢𝑢𝑛𝑛(𝑞𝑞), 𝑢𝑢𝑛𝑛
′ (𝑞𝑞)) − 𝑔𝑔(𝑞𝑞, 𝜑𝜑𝑛𝑛(𝑞𝑞), 𝜑𝜑𝑛𝑛

′ (𝑞𝑞))‖
𝑟𝑟

0

𝑠𝑠

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
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≤ 1
𝛤𝛤(𝛼𝛼) ‖𝑢𝑢𝑛𝑛 − 𝜑𝜑𝑛𝑛‖ ∫ ∫ ∫(𝑞𝑞 − 𝑡𝑡)𝛼𝛼−1

𝑞𝑞

0

𝑟𝑟

0

𝑠𝑠

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + ∫ ∫ 𝜀𝜀1 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟

0

𝑠𝑠

0
 

= 𝐴𝐴𝛼𝛼+2

𝛤𝛤(𝛼𝛼 + 3) ‖𝑢𝑢𝑛𝑛 − 𝜑𝜑𝑛𝑛‖ + 𝜀𝜀1
𝐴𝐴2

2  

 

                      ‖𝑤𝑤𝑛𝑛 − 𝜙𝜙𝑛𝑛‖ ≤ 𝑀𝑀‖𝑢𝑢𝑛𝑛 − 𝜑𝜑𝑛𝑛‖ + 𝐴𝐴2

2 𝜀𝜀1 .                                  (17) 
 
Thus, if the inequality (17) is written in inequality (16) and 𝑀𝑀 ≤ 1 and 12 ≤
𝛽𝛽𝑛𝑛 is used, the following inequality is found. 
 
 ‖𝑣𝑣𝑛𝑛 − 𝜓𝜓𝑛𝑛‖ ≤ (1 − 𝛽𝛽𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑀𝑀)𝑀𝑀‖𝑢𝑢𝑛𝑛 − 𝜑𝜑𝑛𝑛‖ + (1 + 𝛽𝛽𝑛𝑛𝑀𝑀) 𝐴𝐴2

2 𝜀𝜀1     (18) 
 
If this inequality (18) is written in inequality (15), 
 

‖𝑢𝑢𝑛𝑛+1 − 𝜑𝜑𝑛𝑛+1‖ ≤ 𝑀𝑀 [(1 − 𝛽𝛽𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑀𝑀)𝑀𝑀‖𝑢𝑢𝑛𝑛 − 𝜑𝜑𝑛𝑛‖ + (1 + 𝛽𝛽𝑛𝑛𝑀𝑀) 𝐴𝐴2

2 𝜀𝜀1] + 𝐴𝐴2

2 𝜀𝜀1 

= 𝑀𝑀2(1 − 𝛽𝛽𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑀𝑀)‖𝑢𝑢𝑛𝑛 − 𝜑𝜑𝑛𝑛‖ + (1 + 𝛽𝛽𝑛𝑛𝑀𝑀) 𝐴𝐴2

2 𝜀𝜀1 + 𝐴𝐴2

2 𝜀𝜀1 

≤ (1 − 𝛽𝛽𝑛𝑛(1 − 𝑀𝑀))‖𝑢𝑢𝑛𝑛 − 𝜑𝜑𝑛𝑛‖ + (1 + 𝛽𝛽𝑛𝑛𝑀𝑀 + 1) 𝐴𝐴2

2 𝜀𝜀1 

≤ (1 − 𝛽𝛽𝑛𝑛(1 − 𝑀𝑀))‖𝑢𝑢𝑛𝑛 − 𝜑𝜑𝑛𝑛‖ + (1 + 𝛽𝛽𝑛𝑛 + 1) 𝐴𝐴2

2 𝜀𝜀1 

≤ (1 − 𝛽𝛽𝑛𝑛(1 − 𝑀𝑀))‖𝑢𝑢𝑛𝑛 − 𝜑𝜑𝑛𝑛‖ + 5𝛽𝛽𝑛𝑛
𝐴𝐴2

2 𝜀𝜀1 

= (1 − 𝛽𝛽𝑛𝑛(1 − 𝑀𝑀))‖𝑢𝑢𝑛𝑛 − 𝜑𝜑𝑛𝑛‖ + 𝛽𝛽𝑛𝑛(1 − 𝑀𝑀) 5𝐴𝐴2

2(1 − 𝑀𝑀) 𝜀𝜀1 

 
‖𝑢𝑢𝑛𝑛+1 − 𝜑𝜑𝑛𝑛+1‖ ≤ [1 − 𝛽𝛽𝑛𝑛(1 − 𝑀𝑀)]‖𝑢𝑢𝑛𝑛 − 𝜑𝜑𝑛𝑛‖ + 𝛽𝛽𝑛𝑛(1 − 𝑀𝑀) 5𝐴𝐴2𝜀𝜀1

2(1−𝑀𝑀) (19) 

 
is found. From the last inequality, we get  
 
 𝑎𝑎𝑛𝑛 = ‖𝑢𝑢𝑛𝑛 − 𝜑𝜑𝑛𝑛‖ , 
 𝜇𝜇𝑛𝑛 = 𝛽𝛽𝑛𝑛(1 − 𝑀𝑀) ∈ (0,1), 
 𝛾𝛾𝑛𝑛 = 5𝐴𝐴2𝜀𝜀1

2(1−𝑀𝑀) ≥ 0. 
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Therefore, the inequality given by inequality (19) satisfies the conditions 
of Lemma 2.1. Then, 
 

 0 ≤ limsup
𝑛𝑛→∞

‖𝑢𝑢𝑛𝑛 − 𝜑𝜑𝑛𝑛‖ ≤ limsup
𝑛𝑛→∞

𝛾𝛾𝑛𝑛 = limsup
𝑛𝑛→∞

5𝐴𝐴2𝜀𝜀1
2(1−𝑀𝑀) 

 
is obtained. Since 𝑢𝑢𝑛𝑛 → 𝑢𝑢∗  and   𝜑𝜑𝑛𝑛 → 𝑝𝑝 as 𝑛𝑛 → ∞ , we found 
 

 ‖𝑢𝑢∗ − 𝑝𝑝‖ ≤ 5𝐴𝐴2𝜀𝜀1
2(1−𝑀𝑀). (20) 

 
 
 
Conclusion 
We investigated the strong convergence and data dependency of solutions 
to integro-differential equations using the three-step iteration method. By 
leveraging fixed point theory, we demonstrated the effectiveness of this 
iterative approach in ensuring the existence and uniqueness of solutions 
under specific conditions. Our findings highlight the advantages of the 
three-step iteration method over classical methods, particularly in terms of 
convergence speed and stability. Moreover, we analyzed the impact of data 
dependency, providing insights into the sensitivity of solutions with 
respect to initial conditions and parameter variations.The results obtained 
in this study contribute to the ongoing research in fractional differential 
equations and iterative methods. Future work may focus on extending these 
findings to more complex integro-differential systems and exploring 
additional iterative schemes for improved accuracy and efficiency. 
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